亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This work presents a unified framework for path-parametric planning and control. This formulation is universal as it standardizes the entire spectrum of path-parametric techniques -- from traditional path following to more recent contouring or progress-maximizing Model Predictive Control and Reinforcement Learning -- under a single framework. The ingredients underlying this universality are twofold: First, we present a compact and efficient technique capable of computing singularity-free, smooth and differentiable moving frames. Second, we derive a spatial path parameterization of the Cartesian coordinates applicable to any arbitrary curve without prior assumptions on its parametric speed or moving frame, and that perfectly interplays with the aforementioned path parameterization method. The combination of these two ingredients leads to a planning and control framework that brings togehter existing path-parametric techniques in literature. Aiming to unify all these approaches, we open source PACOR, a software library that implements the presented content, thereby providing a self-contained toolkit for the formulation of path-parametric planning and control methods.

相關內容

Machine Learning (ML) models combined with in-situ sensing offer a powerful solution to address defect detection challenges in Additive Manufacturing (AM), yet this integration raises critical data privacy concerns, such as data leakage and sensor data compromise, potentially exposing sensitive information about part design and material composition. Differential Privacy (DP), which adds mathematically controlled noise to ML models, provides a way to balance data utility with privacy by concealing identifiable traces from sensor data. However, introducing noise into ML models, especially black-box Artificial Intelligence (AI) models, complicates the prediction of how noise impacts model accuracy. This study presents the Differential Privacy-Hyperdimensional Computing (DP-HD) framework, which leverages Explainable AI (XAI) and the vector symbolic paradigm to quantify noise effects on accuracy. By defining a Signal-to-Noise Ratio (SNR) metric, DP-HD assesses the contribution of training data relative to DP noise, allowing selection of an optimal balance between accuracy and privacy. Experimental results using high-speed melt pool data for anomaly detection in AM demonstrate that DP-HD achieves superior operational efficiency, prediction accuracy, and privacy protection. For instance, with a privacy budget set at 1, DP-HD achieves 94.43% accuracy, outperforming state-of-the-art ML models. Furthermore, DP-HD maintains high accuracy under substantial noise additions to enhance privacy, unlike current models that experience significant accuracy declines under stringent privacy constraints.

Fluid antenna system (FAS)/movable antenna (MA) has emerged as a promising technology to fully exploit the spatial degrees of freedom (DoFs). In this paper, we propose a new rotatable antenna (RA) model, as a simplified implementation of six-dimensional movable antenna (6DMA), to improve the performance of wireless communication systems. Different from conventional fixed-position antenna (FPA), the proposed RA system can independently and flexibly change the three-dimensional (3D) orientation of each antenna by adjusting its declination angles to achieve desired channel realizations. Specifically, we study an RA-enabled uplink communication system, where the receive beamforming and the declination angles of all RAs are jointly optimized to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among all the users. In the special single-user and free-space propagation setup, the optimal declination angles are derived in closed form with the maximum-ratio combining (MRC) beamformer applied at the base station (BS). In the general multi-user and multi-path setup, we propose an alternating optimization (AO) algorithm to alternately optimize the receive beamforming and the declination angles in an iterative manner. Simulation results are provided to demonstrate that the proposed RA-enabled system can significantly outperform other benchmark schemes.

We demonstrate a new connection between e-graphs and Boolean circuits. This allows us to adapt existing literature on circuits to easily arrive at an algorithm for optimal e-graph extraction, parameterized by treewidth, which runs in $2^{O(w^2)}\text{poly}(w, n)$ time, where $w$ is the treewidth of the e-graph. Additionally, we show how the circuit view of e-graphs allows us to apply powerful simplification techniques, and we analyze a dataset of e-graphs to show that these techniques can reduce e-graph size and treewidth by 40-80% in many cases. While the core parameterized algorithm may be adapted to work directly on e-graphs, the primary value of the circuit view is in allowing the transfer of ideas from the well-established field of circuits to e-graphs.

Predicting spatio-temporal traffic flow presents significant challenges due to complex interactions between spatial and temporal factors. Existing approaches often address these dimensions in isolation, neglecting their critical interdependencies. In this paper, we introduce the Spatio-Temporal Unitized Model (STUM), a unified framework designed to capture both spatial and temporal dependencies while addressing spatio-temporal heterogeneity through techniques such as distribution alignment and feature fusion. It also ensures both predictive accuracy and computational efficiency. Central to STUM is the Adaptive Spatio-temporal Unitized Cell (ASTUC), which utilizes low-rank matrices to seamlessly store, update, and interact with space, time, as well as their correlations. Our framework is also modular, allowing it to integrate with various spatio-temporal graph neural networks through components such as backbone models, feature extractors, residual fusion blocks, and predictive modules to collectively enhance forecasting outcomes. Experimental results across multiple real-world datasets demonstrate that STUM consistently improves prediction performance with minimal computational cost. These findings are further supported by hyperparameter optimization, pre-training analysis, and result visualization. We provide our source code for reproducibility at //anonymous.4open.science/r/STUM-E4F0.

Rate splitting multiple access (RSMA) is regarded as a crucial and powerful physical layer (PHY) paradigm for next-generation communication systems. Particularly, users employ successive interference cancellation (SIC) to decode part of the interference while treating the remainder as noise. However, conventional RSMA systems rely on fixed-position antenna arrays, limiting their ability to fully exploit spatial diversity. This constraint reduces beamforming gain and significantly impairs RSMA performance. To address this problem, we propose a movable antenna (MA)-aided RSMA scheme that allows the antennas at the base station (BS) to dynamically adjust their positions. Our objective is to maximize the system sum rate of common and private messages by jointly optimizing the MA positions, beamforming matrix, and common rate allocation. To tackle the formulated non-convex problem, we apply fractional programming (FP) and develop an efficient two-stage, coarse-to-fine-grained searching (CFGS) algorithm to obtain high-quality solutions. Numerical results demonstrate that, with optimized antenna adjustments, the MA-enabled system achieves substantial performance and reliability improvements in RSMA over fixed-position antenna setups.

While traditional optimization and scheduling schemes are designed to meet fixed, predefined system requirements, future systems are moving toward user-driven approaches and personalized services, aiming to achieve high quality-of-experience (QoE) and flexibility. This challenge is particularly pronounced in wireless and digitalized energy networks, where users' requirements have largely not been taken into consideration due to the lack of a common language between users and machines. The emergence of powerful large language models (LLMs) marks a radical departure from traditional system-centric methods into more advanced user-centric approaches by providing a natural communication interface between users and devices. In this paper, for the first time, we introduce a novel architecture for resource scheduling problems by constructing three LLM agents to convert an arbitrary user's voice request (VRQ) into a resource allocation vector. Specifically, we design an LLM intent recognition agent to translate the request into an optimization problem (OP), an LLM OP parameter identification agent, and an LLM OP solving agent. To evaluate system performance, we construct a database of typical VRQs in the context of electric vehicle (EV) charging. As a proof of concept, we primarily use Llama 3 8B. Through testing with different prompt engineering scenarios, the obtained results demonstrate the efficiency of the proposed architecture. The conducted performance analysis allows key insights to be extracted. For instance, having a larger set of candidate OPs to model the real-world problem might degrade the final performance because of a higher recognition/OP classification noise level. All results and codes are open source.

This manuscript portrays optimization as a process. In many practical applications the environment is so complex that it is infeasible to lay out a comprehensive theoretical model and use classical algorithmic theory and mathematical optimization. It is necessary as well as beneficial to take a robust approach, by applying an optimization method that learns as one goes along, learning from experience as more aspects of the problem are observed. This view of optimization as a process has become prominent in varied fields and has led to some spectacular success in modeling and systems that are now part of our daily lives.

Molecular design and synthesis planning are two critical steps in the process of molecular discovery that we propose to formulate as a single shared task of conditional synthetic pathway generation. We report an amortized approach to generate synthetic pathways as a Markov decision process conditioned on a target molecular embedding. This approach allows us to conduct synthesis planning in a bottom-up manner and design synthesizable molecules by decoding from optimized conditional codes, demonstrating the potential to solve both problems of design and synthesis simultaneously. The approach leverages neural networks to probabilistically model the synthetic trees, one reaction step at a time, according to reactivity rules encoded in a discrete action space of reaction templates. We train these networks on hundreds of thousands of artificial pathways generated from a pool of purchasable compounds and a list of expert-curated templates. We validate our method with (a) the recovery of molecules using conditional generation, (b) the identification of synthesizable structural analogs, and (c) the optimization of molecular structures given oracle functions relevant to drug discovery.

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司