亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Due to their type of mathematical construction, the use of standard financial ratios in studies analysing the financial health of a group of firms leads to a series of statistical problems that can invalidate the results obtained. These problems are originated by the asymmetry of financial ratios. The present article justifies the use of a new methodology using compositional data (CoDa) to analyse the financial statements of a sector, improving analyses using conventional ratios since the new methodology enables statistical techniques to be applied without encountering any serious drawbacks such as skewness and outliers, and without the results depending on the arbitrary choice as to which of the accounting figures is the numerator of the ratio and which is the denominator. An example with data of the wine sector is provided. The results show that when using CoDa, outliers and skewness are much reduced and results are invariant to numerator and denominator permutation.

相關內容

Deep reinforcement learning algorithms have succeeded in several challenging domains. Classic Online RL job schedulers can learn efficient scheduling strategies but often takes thousands of timesteps to explore the environment and adapt from a randomly initialized DNN policy. Existing RL schedulers overlook the importance of learning from historical data and improving upon custom heuristic policies. Offline reinforcement learning presents the prospect of policy optimization from pre-recorded datasets without online environment interaction. Following the recent success of data-driven learning, we explore two RL methods: 1) Behaviour Cloning and 2) Offline RL, which aim to learn policies from logged data without interacting with the environment. These methods address the challenges concerning the cost of data collection and safety, particularly pertinent to real-world applications of RL. Although the data-driven RL methods generate good results, we show that the performance is highly dependent on the quality of the historical datasets. Finally, we demonstrate that by effectively incorporating prior expert demonstrations to pre-train the agent, we short-circuit the random exploration phase to learn a reasonable policy with online training. We utilize Offline RL as a launchpad to learn effective scheduling policies from prior experience collected using Oracle or heuristic policies. Such a framework is effective for pre-training from historical datasets and well suited to continuous improvement with online data collection.

In many applications, we want to influence the decisions of independent agents by designing incentives for their actions. We revisit a fundamental problem in this area, called GAME IMPLEMENTATION: Given a game in standard form and a set of desired strategies, can we design a set of payment promises such that if the players take the payment promises into account, then all undominated strategies are desired? Furthermore, we aim to minimize the cost, that is, the worst-case amount of payments. We study the tractability of computing such payment promises and determine more closely what obstructions we may have to overcome in doing so. We show that GAME IMPLEMENTATION is NP-hard even for two players, solving in particular a long open question (Eidenbenz et al. 2011) and suggesting more restrictions are necessary to obtain tractability results. We thus study the regime in which players have only a small constant number of strategies and obtain the following. First, this case remains NP-hard even if each player's utility depends only on three others. Second, we repair a flawed efficient algorithm for the case of both small number of strategies and small number of players. Among further results, we characterize sets of desired strategies that can be implemented at zero cost as a kind of stable core of the game.

Clustering with outliers is one of the most fundamental problems in Computer Science. Given a set $X$ of $n$ points and two integers $k$ and $m$, the clustering with outliers aims to exclude $m$ points from $X$ and partition the remaining points into $k$ clusters that minimizes a certain cost function. In this paper, we give a general approach for solving clustering with outliers, which results in a fixed-parameter tractable (FPT) algorithm in $k$ and $m$, that almost matches the approximation ratio for its outlier-free counterpart. As a corollary, we obtain FPT approximation algorithms with optimal approximation ratios for $k$-Median and $k$-Means with outliers in general metrics. We also exhibit more applications of our approach to other variants of the problem that impose additional constraints on the clustering, such as fairness or matroid constraints.

Alzheimer's patients gradually lose their ability to think, behave, and interact with others. Medical history, laboratory tests, daily activities, and personality changes can all be used to diagnose the disorder. A series of time-consuming and expensive tests are used to diagnose the illness. The most effective way to identify Alzheimer's disease is using a Random-forest classifier in this study, along with various other Machine Learning techniques. The main goal of this study is to fine-tune the classifier to detect illness with fewer tests while maintaining a reasonable disease discovery accuracy. We successfully identified the condition in almost 94% of cases using four of the thirty frequently utilized indicators.

For basic machine learning problems, expected error is used to evaluate model performance. Since the distribution of data is usually unknown, we can make simple hypothesis that the data are sampled independently and identically distributed (i.i.d.) and the mean value of loss function is used as the empirical risk by Law of Large Numbers (LLN). This is known as the Monte Carlo method. However, when LLN is not applicable, such as imbalanced data problems, empirical risk will cause overfitting and might decrease robustness and generalization ability. Inspired by the framework of nonlinear expectation theory, we substitute the mean value of loss function with the maximum value of subgroup mean loss. We call it nonlinear Monte Carlo method. In order to use numerical method of optimization, we linearize and smooth the functional of maximum empirical risk and get the descent direction via quadratic programming. With the proposed method, we achieve better performance than SOTA backbone models with less training steps, and more robustness for basic regression and imbalanced classification tasks.

The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.

As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.

Edge intelligence refers to a set of connected systems and devices for data collection, caching, processing, and analysis in locations close to where data is captured based on artificial intelligence. The aim of edge intelligence is to enhance the quality and speed of data processing and protect the privacy and security of the data. Although recently emerged, spanning the period from 2011 to now, this field of research has shown explosive growth over the past five years. In this paper, we present a thorough and comprehensive survey on the literature surrounding edge intelligence. We first identify four fundamental components of edge intelligence, namely edge caching, edge training, edge inference, and edge offloading, based on theoretical and practical results pertaining to proposed and deployed systems. We then aim for a systematic classification of the state of the solutions by examining research results and observations for each of the four components and present a taxonomy that includes practical problems, adopted techniques, and application goals. For each category, we elaborate, compare and analyse the literature from the perspectives of adopted techniques, objectives, performance, advantages and drawbacks, etc. This survey article provides a comprehensive introduction to edge intelligence and its application areas. In addition, we summarise the development of the emerging research field and the current state-of-the-art and discuss the important open issues and possible theoretical and technical solutions.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

Most previous event extraction studies have relied heavily on features derived from annotated event mentions, thus cannot be applied to new event types without annotation effort. In this work, we take a fresh look at event extraction and model it as a grounding problem. We design a transferable neural architecture, mapping event mentions and types jointly into a shared semantic space using structural and compositional neural networks, where the type of each event mention can be determined by the closest of all candidate types . By leveraging (1)~available manual annotations for a small set of existing event types and (2)~existing event ontologies, our framework applies to new event types without requiring additional annotation. Experiments on both existing event types (e.g., ACE, ERE) and new event types (e.g., FrameNet) demonstrate the effectiveness of our approach. \textit{Without any manual annotations} for 23 new event types, our zero-shot framework achieved performance comparable to a state-of-the-art supervised model which is trained from the annotations of 500 event mentions.

北京阿比特科技有限公司