亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we investigate a novel monolithic algebraic multigrid solver for the discrete Stokes problem discretized with stable mixed finite elements. The algorithm is based on the use of the low-order $\pmb{\mathbb{P}}_1 \text{iso}\kern1pt\pmb{ \mathbb{P}}_2/ \mathbb{P}_1$ discretization as a preconditioner for a higher-order discretization, such as $\pmb{\mathbb{P}}_2/\mathbb{P}_1$. Smoothed aggregation algebraic multigrid is used to construct independent coarsenings of the velocity and pressure fields for the low-order discretization, resulting in a purely algebraic preconditioner for the high-order discretization (i.e., using no geometric information). Furthermore, we incorporate a novel block LU factorization technique for Vanka patches, which balances computational efficiency with lower storage requirements. The effectiveness of the new method is verified for the $\pmb{\mathbb{P}}_2/\mathbb{P}_1$ (Taylor-Hood) discretization in two and three dimensions on both structured and unstructured meshes. Similarly, the approach is shown to be effective when applied to the $\pmb{\mathbb{P}}_2/\mathbb{P}_1^{disc}$ (Scott-Vogelius) discretization on 2D barycentrically refined meshes. This novel monolithic algebraic multigrid solver not only meets but frequently surpasses the performance of inexact Uzawa preconditioners, demonstrating the versatility and robust performance across a diverse spectrum of problem sets, even where inexact Uzawa preconditioners struggle to converge.

相關內容

In this paper, we prove measurability of event for which a general continuous-time stochastic process satisfies continuous-time Metric Temporal Logic (MTL) formula. Continuous-time MTL can define temporal constrains for physical system in natural way. Then there are several researches that deal with probability of continuous MTL semantics for stochastic processes. However, proving measurability for such events is by no means an obvious task, even though it is essential. The difficulty comes from the semantics of "until operator", which is defined by logical sum of uncountably many propositions. Given the difficulty involved in proving the measurability of such an event using classical measure-theoretic methods, we employ a theorem from stochastic analysis. This theorem is utilized to prove the measurability of hitting times for stochastic processes, and it stands as a profound result within the theory of capacity. Next, we provide an example that illustrates the failure of probability approximation when discretizing the continuous semantics of MTL formulas with respect to time. Additionally, we prove that the probability of the discretized semantics converges to that of the continuous semantics when we impose restrictions on diamond operators to prevent nesting.

The dynamic ranking, due to its increasing importance in many applications, is becoming crucial, especially with the collection of voluminous time-dependent data. One such application is sports statistics, where dynamic ranking aids in forecasting the performance of competitive teams, drawing on historical and current data. Despite its usefulness, predicting and inferring rankings pose challenges in environments necessitating time-dependent modeling. This paper introduces a spectral ranker called Kernel Rank Centrality, designed to rank items based on pairwise comparisons over time. The ranker operates via kernel smoothing in the Bradley-Terry model, utilizing a Markov chain model. Unlike the maximum likelihood approach, the spectral ranker is nonparametric, demands fewer model assumptions and computations, and allows for real-time ranking. We establish the asymptotic distribution of the ranker by applying an innovative group inverse technique, resulting in a uniform and precise entrywise expansion. This result allows us to devise a new inferential method for predictive inference, previously unavailable in existing approaches. Our numerical examples showcase the ranker's utility in predictive accuracy and constructing an uncertainty measure for prediction, leveraging data from the National Basketball Association (NBA). The results underscore our method's potential compared to the gold standard in sports, the Arpad Elo rating system.

In this paper, we introduce a nonlinear stochastic model to describe the propagation of information inside a computer processor. In this model, a computational task is divided into stages, and information can flow from one stage to another. The model is formulated as a spatially-extended, continuous-time Markov chain where space represents different stages. This model is equivalent to a spatially-extended version of the M/M/s queue. The main modeling feature is the throttling function which describes the processor slowdown when the amount of information falls below a certain threshold. We derive the stationary distribution for this stochastic model and develop a closure for a deterministic ODE system that approximates the evolution of the mean and variance of the stochastic model. We demonstrate the validity of the closure with numerical simulations.

Online auction scenarios, such as bidding searches on advertising platforms, often require bidders to participate repeatedly in auctions for the same or similar items. We design an algorithm for adaptive automatic bidding in repeated auctions in which the seller and other bidders also update their strategies. We apply and improve the opponent modeling algorithm to allow bidders to learn optimal bidding strategies in this multiagent reinforcement learning environment. The algorithm uses almost no private information about the opponent or restrictions on the strategy space, so it can be extended to multiple scenarios. Our algorithm improves the utility compared to both static bidding strategies and dynamic learning strategies. We hope the application of opponent modeling in auctions will promote the research of automatic bidding strategies in online auctions and the design of non-incentive compatible auction mechanisms.

In this paper, we tackle two challenges in multimodal learning for visual recognition: 1) when missing-modality occurs either during training or testing in real-world situations; and 2) when the computation resources are not available to finetune on heavy transformer models. To this end, we propose to utilize prompt learning and mitigate the above two challenges together. Specifically, our modality-missing-aware prompts can be plugged into multimodal transformers to handle general missing-modality cases, while only requiring less than 1% learnable parameters compared to training the entire model. We further explore the effect of different prompt configurations and analyze the robustness to missing modality. Extensive experiments are conducted to show the effectiveness of our prompt learning framework that improves the performance under various missing-modality cases, while alleviating the requirement of heavy model re-training. Code is available.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).

BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司