Consumers frequently interact with reputation systems to rate products, services, and deliveries. While past research extensively studied different conceptual approaches to realize such systems securely and privacy-preservingly, these concepts are not yet in use in business-to-business environments. In this paper, (1) we thus outline which specific challenges privacy-cautious stakeholders in volatile supply chain networks introduce, (2) give an overview of the diverse landscape of privacy-preserving reputation systems and their properties, and (3) based on well-established concepts from supply chain information systems and cryptography, we further propose an initial concept that accounts for the aforementioned challenges by utilizing fully homomorphic encryption. For future work, we identify the need of evaluating whether novel systems address the supply chain-specific privacy and confidentiality needs.
We study a graph-based generalization of the Galam opinion formation model. Consider a simple connected graph which represents a social network. Each node in the graph is colored either blue or white, which indicates a positive or negative opinion on a new product or a topic. In each discrete-time round, all nodes are assigned randomly to groups of different sizes, where the node(s) in each group form a clique in the underlying graph. All the nodes simultaneously update their color to the majority color in their group. If there is a tie, each node in the group chooses one of the two colors uniformly at random. Investigating the convergence time of the model, our experiments show that the convergence time is a logarithm function of the number of nodes for a complete graph and a quadratic function for a cycle graph. We also study the various strategies for selecting a set of seed nodes to maximize the final cascade of one of the two colors, motivated by viral marketing. We consider the algorithms where the seed nodes are selected based on the graph structure (nodes' centrality measures such as degree, betweenness, and closeness) and the individual's characteristics (activeness and stubbornness). We provide a comparison of such strategies by conducting experiments on different real-world and synthetic networks.
The robot development process is divided into several stages, which create barriers to the exchange of information between these different stages. We advocate for an interactive lifecycle representation, extending from robot morphology design to learning, and introduce the role of robot description formats in facilitating information transfer throughout this pipeline. We analyzed the relationship between design and simulation, enabling us to employ robot process automation methods for transferring information from the design phase to the learning phase in simulation. As part of this effort, we have developed an open-source plugin called ACDC4Robot for Fusion 360, which automates this process and transforms Fusion 360 into a user-friendly graphical interface for creating and editing robot description formats. Additionally, we offer an out-of-the-box robot model library to streamline and reduce repetitive tasks. All codes are hosted open-source. (\url{//github.com/bionicdl-sustech/ACDC4Robot})
Effectively explaining decisions of black-box machine learning models is critical to responsible deployment of AI systems that rely on them. Recognizing their importance, the field of explainable AI (XAI) provides several techniques to generate these explanations. Yet, there is relatively little emphasis on the user (the explainee) in this growing body of work and most XAI techniques generate "one-size-fits-all" explanations. To bridge this gap and achieve a step closer towards human-centered XAI, we present I-CEE, a framework that provides Image Classification Explanations tailored to User Expertise. Informed by existing work, I-CEE explains the decisions of image classification models by providing the user with an informative subset of training data (i.e., example images), corresponding local explanations, and model decisions. However, unlike prior work, I-CEE models the informativeness of the example images to depend on user expertise, resulting in different examples for different users. We posit that by tailoring the example set to user expertise, I-CEE can better facilitate users' understanding and simulatability of the model. To evaluate our approach, we conduct detailed experiments in both simulation and with human participants (N = 100) on multiple datasets. Experiments with simulated users show that I-CEE improves users' ability to accurately predict the model's decisions (simulatability) compared to baselines, providing promising preliminary results. Experiments with human participants demonstrate that our method significantly improves user simulatability accuracy, highlighting the importance of human-centered XAI
We present SeaEval, a benchmark for multilingual foundation models. In addition to characterizing how these models understand and reason with natural language, we also investigate how well they comprehend cultural practices, nuances, and values. Alongside standard accuracy metrics, we investigate the brittleness of foundation models in the dimensions of semantics and multilinguality. Our analyses span both open-sourced and closed models, leading to empirical results across classic NLP tasks, reasoning, and cultural comprehension. Key findings indicate (1) Most models exhibit varied behavior when given paraphrased instructions. (2) Many models still suffer from exposure bias (e.g., positional bias, majority label bias). (3) For questions rooted in factual, scientific, and commonsense knowledge, consistent responses are expected across multilingual queries that are semantically equivalent. Yet, most models surprisingly demonstrate inconsistent performance on these queries. (4) Multilingually-trained models have not attained "balanced multilingual" capabilities. Our endeavors underscore the need for more generalizable semantic representations and enhanced multilingual contextualization. SeaEval can serve as a launchpad for more thorough investigations and evaluations for multilingual and multicultural scenarios.
This study reexamines diffusive representations for fractional integrals with the goal of pioneering new variants of such representations. These variants aim to offer highly efficient numerical algorithms for the approximate computation of fractional integrals. The approach seamlessly aligns with established techniques used in addressing problems involving integer-order operators, contributing to a unified framework for numerical solutions.
With increasingly volatile market conditions and rapid product innovations, operational decision-making for large-scale systems entails solving thousands of problems with limited data. Data aggregation is proposed to combine the data across problems to improve the decisions obtained by solving those problems individually. We propose a novel cluster-based Shrunken-SAA approach that can exploit the cluster structure among problems when implementing the data aggregation approaches. We prove that, as the number of problems grows, leveraging the given cluster structure among problems yields additional benefits over the data aggregation approaches that neglect such structure. When the cluster structure is unknown, we show that unveiling the cluster structure, even at the cost of a few data points, can be beneficial, especially when the distance between clusters of problems is substantial. Our proposed approach can be extended to general cost functions under mild conditions. When the number of problems gets large, the optimality gap of our proposed approach decreases exponentially in the distance between the clusters. We explore the performance of the proposed approach through the application of managing newsvendor systems via numerical experiments. We investigate the impacts of distance metrics between problem instances on the performance of the cluster-based Shrunken-SAA approach with synthetic data. We further validate our proposed approach with real data and highlight the advantages of cluster-based data aggregation, especially in the small-data large-scale regime, compared to the existing approaches.
Extensive utilization of deep reinforcement learning (DRL) policy networks in diverse continuous control tasks has raised questions regarding performance degradation in expansive state spaces where the input state norm is larger than that in the training environment. This paper aims to uncover the underlying factors contributing to such performance deterioration when dealing with expanded state spaces, using a novel analysis technique known as state division. In contrast to prior approaches that employ state division merely as a post-hoc explanatory tool, our methodology delves into the intrinsic characteristics of DRL policy networks. Specifically, we demonstrate that the expansion of state space induces the activation function $\tanh$ to exhibit saturability, resulting in the transformation of the state division boundary from nonlinear to linear. Our analysis centers on the paradigm of the double-integrator system, revealing that this gradual shift towards linearity imparts a control behavior reminiscent of bang-bang control. However, the inherent linearity of the division boundary prevents the attainment of an ideal bang-bang control, thereby introducing unavoidable overshooting. Our experimental investigations, employing diverse RL algorithms, establish that this performance phenomenon stems from inherent attributes of the DRL policy network, remaining consistent across various optimization algorithms.
In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.
Autonomic computing investigates how systems can achieve (user) specified control outcomes on their own, without the intervention of a human operator. Autonomic computing fundamentals have been substantially influenced by those of control theory for closed and open-loop systems. In practice, complex systems may exhibit a number of concurrent and inter-dependent control loops. Despite research into autonomic models for managing computer resources, ranging from individual resources (e.g., web servers) to a resource ensemble (e.g., multiple resources within a data center), research into integrating Artificial Intelligence (AI) and Machine Learning (ML) to improve resource autonomy and performance at scale continues to be a fundamental challenge. The integration of AI/ML to achieve such autonomic and self-management of systems can be achieved at different levels of granularity, from full to human-in-the-loop automation. In this article, leading academics, researchers, practitioners, engineers, and scientists in the fields of cloud computing, AI/ML, and quantum computing join to discuss current research and potential future directions for these fields. Further, we discuss challenges and opportunities for leveraging AI and ML in next generation computing for emerging computing paradigms, including cloud, fog, edge, serverless and quantum computing environments.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.