We investigate the convergence of the primal-dual algorithm for composite optimization problems when the objective functions are weakly convex. We introduce a modified duality gap function, which is a lower bound of the standard duality gap function. Under the sharpness condition of this new function, we identify the area around the set of saddle points where we obtain the convergence of the primal-dual algorithm. We give numerical examples and applications in image denoising and deblurring to demonstrate our results.
This work considers the Galerkin approximation and analysis for a hyperbolic integrodifferential equation, where the non-positive variable-sign kernel and nonlinear-nonlocal damping with both the weak and viscous damping effects are involved. We derive the long-time stability of the solution and its finite-time uniqueness. For the semi-discrete-in-space Galerkin scheme, we derive the long-time stability of the semi-discrete numerical solution and its finite-time error estimate by technical splitting of intricate terms. Then we further apply the centering difference method and the interpolating quadrature to construct a fully discrete Galerkin scheme and prove the long-time stability of the numerical solution and its finite-time error estimate by designing a new semi-norm. Numerical experiments are performed to verify the theoretical findings.
In this contribution, we address the numerical solutions of high-order asymptotic equivalent partial differential equations with the results of a lattice Boltzmann scheme for an inhomogeneous advection problem in one spatial dimension. We first derive a family of equivalent partial differential equations at various orders, and we compare the lattice Boltzmann experimental results with a spectral approximation of the differential equations. For an unsteady situation, we show that the initialization scheme at a sufficiently high order of the microscopic moments plays a crucial role to observe an asymptotic error consistent with the order of approximation. For a stationary long-time limit, we observe that the measured asymptotic error converges with a reduced order of precision compared to the one suggested by asymptotic analysis.
A finite element method is introduced to track interface evolution governed by the level set equation. The method solves for the level set indicator function in a narrow band around the interface. An extension procedure, which is essential for a narrow band level set method, is introduced based on a finite element $L^2$- or $H^1$-projection combined with the ghost-penalty method. This procedure is formulated as a linear variational problem in a narrow band around the surface, making it computationally efficient and suitable for rigorous error analysis. The extension method is combined with a discontinuous Galerkin space discretization and a BDF time-stepping scheme. The paper analyzes the stability and accuracy of the extension procedure and evaluates the performance of the resulting narrow band finite element method for the level set equation through numerical experiments.
We systematically investigate the preservation of differential privacy in functional data analysis, beginning with functional mean estimation and extending to varying coefficient model estimation. Our work introduces a distributed learning framework involving multiple servers, each responsible for collecting several sparsely observed functions. This hierarchical setup introduces a mixed notion of privacy. Within each function, user-level differential privacy is applied to $m$ discrete observations. At the server level, central differential privacy is deployed to account for the centralised nature of data collection. Across servers, only private information is exchanged, adhering to federated differential privacy constraints. To address this complex hierarchy, we employ minimax theory to reveal several fundamental phenomena: from sparse to dense functional data analysis, from user-level to central and federated differential privacy costs, and the intricate interplay between different regimes of functional data analysis and privacy preservation. To the best of our knowledge, this is the first study to rigorously examine functional data estimation under multiple privacy constraints. Our theoretical findings are complemented by efficient private algorithms and extensive numerical evidence, providing a comprehensive exploration of this challenging problem.
We develop and analyze stochastic inexact Gauss-Newton methods for nonlinear least-squares problems and for nonlinear systems ofequations. Random models are formed using suitable sampling strategies for the matrices involved in the deterministic models. The analysis of the expected number of iterations needed in the worst case to achieve a desired level of accuracy in the first-order optimality condition provides guidelines for applying sampling and enforcing, with \minor{a} fixed probability, a suitable accuracy in the random approximations. Results of the numerical validation of the algorithms are presented.
We consider the problem of estimating the error when solving a system of differential algebraic equations. Richardson extrapolation is a classical technique that can be used to judge when computational errors are irrelevant and estimate the discretization error. We have simulated molecular dynamics with constraints using the GROMACS library and found that the output is not always amenable to Richardson extrapolation. We derive and illustrate Richardson extrapolation using a variety of numerical experiments. We identify two necessary conditions that are not always satisfied by the GROMACS library.
In longitudinal observational studies with time-to-event outcomes, a common objective in causal analysis is to estimate the causal survival curve under hypothetical intervention scenarios. The g-formula is a useful tool for this analysis. To enhance the traditional parametric g-formula, we developed an alternative g-formula estimator, which incorporates the Bayesian Additive Regression Trees (BART) into the modeling of the time-evolving generative components, aiming to mitigate the bias due to model misspecification. We focus on binary time-varying treatments and introduce a general class of g-formulas for discrete survival data that can incorporate the longitudinal balancing scores. The minimum sufficient formulation of these longitudinal balancing scores is linked to the nature of treatment strategies, i.e., static or dynamic. For each type of treatment strategy, we provide posterior sampling algorithms. We conducted simulations to illustrate the empirical performance of the proposed method and demonstrate its practical utility using data from the Yale New Haven Health System's electronic health records.
Clustering and outlier detection are two important tasks in data mining. Outliers frequently interfere with clustering algorithms to determine the similarity between objects, resulting in unreliable clustering results. Currently, only a few clustering algorithms (e.g., DBSCAN) have the ability to detect outliers to eliminate interference. For other clustering algorithms, it is tedious to introduce another outlier detection task to eliminate outliers before each clustering process. Obviously, how to equip more clustering algorithms with outlier detection ability is very meaningful. Although a common strategy allows clustering algorithms to detect outliers based on the distance between objects and clusters, it is contradictory to improving the performance of clustering algorithms on the datasets with outliers. In this paper, we propose a novel outlier detection approach, called ODAR, for clustering. ODAR maps outliers and normal objects into two separated clusters by feature transformation. As a result, any clustering algorithm can detect outliers by identifying clusters. Experiments show that ODAR is robust to diverse datasets. Compared with baseline methods, the clustering algorithms achieve the best on 7 out of 10 datasets with the help of ODAR, with at least 5% improvement in accuracy.
We study the strong approximation of the solutions to singular stochastic kinetic equations (also referred to as second-order SDEs) driven by $\alpha$-stable processes, using an Euler-type scheme inspired by [11]. For these equations, the stability index $\alpha$ lies in the range $(1,2)$, and the drift term exhibits anisotropic $\beta$-H\"older continuity with $\beta >1 - \frac{\alpha}{2}$. We establish a convergence rate of $(\frac{1}{2} + \frac{\beta}{\alpha(1+\alpha)} \wedge \frac{1}{2})$, which aligns with the results in [4] concerning first-order SDEs.
We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.