亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work, we present new proofs of convergence for Plug-and-Play (PnP) algorithms. PnP methods are efficient iterative algorithms for solving image inverse problems where regularization is performed by plugging a pre-trained denoiser in a proximal algorithm, such as Proximal Gradient Descent (PGD) or Douglas-Rachford Splitting (DRS). Recent research has explored convergence by incorporating a denoiser that writes exactly as a proximal operator. However, the corresponding PnP algorithm has then to be run with stepsize equal to $1$. The stepsize condition for nonconvex convergence of the proximal algorithm in use then translates to restrictive conditions on the regularization parameter of the inverse problem. This can severely degrade the restoration capacity of the algorithm. In this paper, we present two remedies for this limitation. First, we provide a novel convergence proof for PnP-DRS that does not impose any restrictions on the regularization parameter. Second, we examine a relaxed version of the PGD algorithm that converges across a broader range of regularization parameters. Our experimental study, conducted on deblurring and super-resolution experiments, demonstrate that both of these solutions enhance the accuracy of image restoration.

相關內容

Categorization is one of the basic tasks in machine learning and data analysis. Building on formal concept analysis (FCA), the starting point of the present work is that different ways to categorize a given set of objects exist, which depend on the choice of the sets of features used to classify them, and different such sets of features may yield better or worse categorizations, relative to the task at hand. In their turn, the (a priori) choice of a particular set of features over another might be subjective and express a certain epistemic stance (e.g. interests, relevance, preferences) of an agent or a group of agents, namely, their interrogative agenda. In the present paper, we represent interrogative agendas as sets of features, and explore and compare different ways to categorize objects w.r.t. different sets of features (agendas). We first develop a simple unsupervised FCA-based algorithm for outlier detection which uses categorizations arising from different agendas. We then present a supervised meta-learning algorithm to learn suitable (fuzzy) agendas for categorization as sets of features with different weights or masses. We combine this meta-learning algorithm with the unsupervised outlier detection algorithm to obtain a supervised outlier detection algorithm. We show that these algorithms perform at par with commonly used algorithms for outlier detection on commonly used datasets in outlier detection. These algorithms provide both local and global explanations of their results.

In this contribution, we derive a consistent variational formulation for computational homogenization methods and show that traditional FE2 and IGA2 approaches are special discretization and solution techniques of this most general framework. This allows us to enhance dramatically the numerical analysis as well as the solution of the arising algebraic system. In particular, we expand the dimension of the continuous system, discretize the higher dimensional problem consistently and apply afterwards a discrete null-space matrix to remove the additional dimensions. A benchmark problem, for which we can obtain an analytical solution, demonstrates the superiority of the chosen approach aiming to reduce the immense computational costs of traditional FE2 and IGA2 formulations to a fraction of the original requirements. Finally, we demonstrate a further reduction of the computational costs for the solution of general non-linear problems.

Empirical Bayes provides a powerful approach to learning and adapting to latent structure in data. Theory and algorithms for empirical Bayes have a rich literature for sequence models, but are less understood in settings where latent variables and data interact through more complex designs. In this work, we study empirical Bayes estimation of an i.i.d. prior in Bayesian linear models, via the nonparametric maximum likelihood estimator (NPMLE). We introduce and study a system of gradient flow equations for optimizing the marginal log-likelihood, jointly over the prior and posterior measures in its Gibbs variational representation using a smoothed reparametrization of the regression coefficients. A diffusion-based implementation yields a Langevin dynamics MCEM algorithm, where the prior law evolves continuously over time to optimize a sequence-model log-likelihood defined by the coordinates of the current Langevin iterate. We show consistency of the NPMLE as $n, p \rightarrow \infty$ under mild conditions, including settings of random sub-Gaussian designs when $n \asymp p$. In high noise, we prove a uniform log-Sobolev inequality for the mixing of Langevin dynamics, for possibly misspecified priors and non-log-concave posteriors. We then establish polynomial-time convergence of the joint gradient flow to a near-NPMLE if the marginal negative log-likelihood is convex in a sub-level set of the initialization.

Coordinate exchange (CEXCH) is a popular algorithm for generating exact optimal experimental designs. The authors of CEXCH advocated for a highly greedy implementation - one that exchanges and optimizes single element coordinates of the design matrix. We revisit the effect of greediness on CEXCHs efficacy for generating highly efficient designs. We implement the single-element CEXCH (most greedy), a design-row (medium greedy) optimization exchange, and particle swarm optimization (PSO; least greedy) on 21 exact response surface design scenarios, under the $D$- and $I-$criterion, which have well-known optimal designs that have been reproduced by several researchers. We found essentially no difference in performance of the most greedy CEXCH and the medium greedy CEXCH. PSO did exhibit better efficacy for generating $D$-optimal designs, and for most $I$-optimal designs than CEXCH, but not to a strong degree under our parametrization. This work suggests that further investigation of the greediness dimension and its effect on CEXCH efficacy on a wider suite of models and criterion is warranted.

We study the annealed complexity of a random Gaussian homogeneous polynomial on the $N$-dimensional unit sphere in the presence of deterministic polynomials that depend on fixed unit vectors and external parameters. In particular, we establish variational formulas for the exponential asymptotics of the average number of total critical points and of local maxima. This is obtained through the Kac-Rice formula and the determinant asymptotics of a finite-rank perturbation of a Gaussian Wigner matrix. More precisely, the determinant analysis is based on recent advances on finite-rank spherical integrals by [Guionnet, Husson 2022] to study the large deviations of multi-rank spiked Gaussian Wigner matrices. The analysis of the variational problem identifies a topological phase transition. There is an exact threshold for the external parameters such that, once exceeded, the complexity function vanishes into new regions in which the critical points are close to the given vectors. Interestingly, these regions also include those where critical points are close to multiple vectors.

The arrival of AI techniques in computations, with the potential for hallucinations and non-robustness, has made trustworthiness of algorithms a focal point. However, trustworthiness of the many classical approaches are not well understood. This is the case for feature selection, a classical problem in the sciences, statistics, machine learning etc. Here, the LASSO optimisation problem is standard. Despite its widespread use, it has not been established when the output of algorithms attempting to compute support sets of minimisers of LASSO in order to do feature selection can be trusted. In this paper we establish how no (randomised) algorithm that works on all inputs can determine the correct support sets (with probability $> 1/2$) of minimisers of LASSO when reading approximate input, regardless of precision and computing power. However, we define a LASSO condition number and design an efficient algorithm for computing these support sets provided the input data is well-posed (has finite condition number) in time polynomial in the dimensions and logarithm of the condition number. For ill-posed inputs the algorithm runs forever, hence, it will never produce a wrong answer. Furthermore, the algorithm computes an upper bound for the condition number when this is finite. Finally, for any algorithm defined on an open set containing a point with infinite condition number, there is an input for which the algorithm will either run forever or produce a wrong answer. Our impossibility results stem from generalised hardness of approximation -- within the Solvability Complexity Index (SCI) hierarchy framework -- that generalises the classical phenomenon of hardness of approximation.

This work puts forth low-complexity Riemannian subspace descent algorithms for the minimization of functions over the symmetric positive definite (SPD) manifold. Different from the existing Riemannian gradient descent variants, the proposed approach utilizes carefully chosen subspaces that allow the update to be written as a product of the Cholesky factor of the iterate and a sparse matrix. The resulting updates avoid the costly matrix operations like matrix exponentiation and dense matrix multiplication, which are generally required in almost all other Riemannian optimization algorithms on SPD manifold. We further identify a broad class of functions, arising in diverse applications, such as kernel matrix learning, covariance estimation of Gaussian distributions, maximum likelihood parameter estimation of elliptically contoured distributions, and parameter estimation in Gaussian mixture model problems, over which the Riemannian gradients can be calculated efficiently. The proposed uni-directional and multi-directional Riemannian subspace descent variants incur per-iteration complexities of $O(n)$ and $O(n^2)$ respectively, as compared to the $O(n^3)$ or higher complexity incurred by all existing Riemannian gradient descent variants. The superior runtime and low per-iteration complexity of the proposed algorithms is also demonstrated via numerical tests on large-scale covariance estimation and matrix square root problems. MATLAB code implementation is publicly available on GitHub : //github.com/yogeshd-iitk/subspace_descent_over_SPD_manifold

In this article, we study some anisotropic singular perturbations for a class of linear elliptic problems. A uniform estimates for conforming $Q_1$ finite element method are derived, and some other results of convergence and regularity for the continuous problem are proved.

Ensemble methods such as bagging and random forests are ubiquitous in various fields, from finance to genomics. Despite their prevalence, the question of the efficient tuning of ensemble parameters has received relatively little attention. This paper introduces a cross-validation method, ECV (Extrapolated Cross-Validation), for tuning the ensemble and subsample sizes in randomized ensembles. Our method builds on two primary ingredients: initial estimators for small ensemble sizes using out-of-bag errors and a novel risk extrapolation technique that leverages the structure of prediction risk decomposition. By establishing uniform consistency of our risk extrapolation technique over ensemble and subsample sizes, we show that ECV yields $\delta$-optimal (with respect to the oracle-tuned risk) ensembles for squared prediction risk. Our theory accommodates general ensemble predictors, only requires mild moment assumptions, and allows for high-dimensional regimes where the feature dimension grows with the sample size. As a practical case study, we employ ECV to predict surface protein abundances from gene expressions in single-cell multiomics using random forests. In comparison to sample-split cross-validation and $K$-fold cross-validation, ECV achieves higher accuracy avoiding sample splitting. At the same time, its computational cost is considerably lower owing to the use of the risk extrapolation technique. Additional numerical results validate the finite-sample accuracy of ECV for several common ensemble predictors under a computational constraint on the maximum ensemble size.

In this article, we study nonparametric inference for a covariate-adjusted regression function. This parameter captures the average association between a continuous exposure and an outcome after adjusting for other covariates. In particular, under certain causal conditions, this parameter corresponds to the average outcome had all units been assigned to a specific exposure level, known as the causal dose-response curve. We propose a debiased local linear estimator of the covariate-adjusted regression function, and demonstrate that our estimator converges pointwise to a mean-zero normal limit distribution. We use this result to construct asymptotically valid confidence intervals for function values and differences thereof. In addition, we use approximation results for the distribution of the supremum of an empirical process to construct asymptotically valid uniform confidence bands. Our methods do not require undersmoothing, permit the use of data-adaptive estimators of nuisance functions, and our estimator attains the optimal rate of convergence for a twice differentiable function. We illustrate the practical performance of our estimator using numerical studies and an analysis of the effect of air pollution exposure on cardiovascular mortality.

北京阿比特科技有限公司