亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Top-down visual attention mechanisms have been used extensively in image captioning and visual question answering (VQA) to enable deeper image understanding through fine-grained analysis and even multiple steps of reasoning. In this work, we propose a combined bottom-up and top-down attention mechanism that enables attention to be calculated at the level of objects and other salient image regions. This is the natural basis for attention to be considered. Within our approach, the bottom-up mechanism (based on Faster R-CNN) proposes image regions, each with an associated feature vector, while the top-down mechanism determines feature weightings. Applying this approach to image captioning, our results on the MSCOCO test server establish a new state-of-the-art for the task, achieving CIDEr / SPICE / BLEU-4 scores of 117.9, 21.5 and 36.9, respectively. Demonstrating the broad applicability of the method, applying the same approach to VQA we obtain first place in the 2017 VQA Challenge.

相關內容

視覺問答(Visual Question Answering,VQA),是一種涉及計算機視覺和自然語言處理的學習任務。這一任務的定義如下: A VQA system takes as input an image and a free-form, open-ended, natural-language question about the image and produces a natural-language answer as the output[1]。 翻譯為中文:一個VQA系統以一張圖片和一個關于這張圖片形式自由、開放式的自然語言問題作為輸入,以生成一條自然語言答案作為輸出。簡單來說,VQA就是給定的圖片進行問答。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

In this paper, we propose a novel deep multi-level attention model to address inverse visual question answering. The proposed model generates regional visual and semantic features at the object level and then enhances them with the answer cue by using attention mechanisms. Two levels of multiple attentions are employed in the model, including the dual attention at the partial question encoding step and the dynamic attention at the next question word generation step. We evaluate the proposed model on the VQA V1 dataset. It demonstrates state-of-the-art performance in terms of multiple commonly used metrics.

It is always well believed that parsing an image into constituent visual patterns would be helpful for understanding and representing an image. Nevertheless, there has not been evidence in support of the idea on describing an image with a natural-language utterance. In this paper, we introduce a new design to model a hierarchy from instance level (segmentation), region level (detection) to the whole image to delve into a thorough image understanding for captioning. Specifically, we present a HIerarchy Parsing (HIP) architecture that novelly integrates hierarchical structure into image encoder. Technically, an image decomposes into a set of regions and some of the regions are resolved into finer ones. Each region then regresses to an instance, i.e., foreground of the region. Such process naturally builds a hierarchal tree. A tree-structured Long Short-Term Memory (Tree-LSTM) network is then employed to interpret the hierarchal structure and enhance all the instance-level, region-level and image-level features. Our HIP is appealing in view that it is pluggable to any neural captioning models. Extensive experiments on COCO image captioning dataset demonstrate the superiority of HIP. More remarkably, HIP plus a top-down attention-based LSTM decoder increases CIDEr-D performance from 120.1% to 127.2% on COCO Karpathy test split. When further endowing instance-level and region-level features from HIP with semantic relation learnt through Graph Convolutional Networks (GCN), CIDEr-D is boosted up to 130.6%.

Image captioning has attracted considerable attention in recent years. However, little work has been done for game image captioning which has some unique characteristics and requirements. In this work we propose a novel game image captioning model which integrates bottom-up attention with a new multi-level residual top-down attention mechanism. Firstly, a lower-level residual top-down attention network is added to the Faster R-CNN based bottom-up attention network to address the problem that the latter may lose important spatial information when extracting regional features. Secondly, an upper-level residual top-down attention network is implemented in the caption generation network to better fuse the extracted regional features for subsequent caption prediction. We create two game datasets to evaluate the proposed model. Extensive experiments show that our proposed model outperforms existing baseline models.

It is always well believed that modeling relationships between objects would be helpful for representing and eventually describing an image. Nevertheless, there has not been evidence in support of the idea on image description generation. In this paper, we introduce a new design to explore the connections between objects for image captioning under the umbrella of attention-based encoder-decoder framework. Specifically, we present Graph Convolutional Networks plus Long Short-Term Memory (dubbed as GCN-LSTM) architecture that novelly integrates both semantic and spatial object relationships into image encoder. Technically, we build graphs over the detected objects in an image based on their spatial and semantic connections. The representations of each region proposed on objects are then refined by leveraging graph structure through GCN. With the learnt region-level features, our GCN-LSTM capitalizes on LSTM-based captioning framework with attention mechanism for sentence generation. Extensive experiments are conducted on COCO image captioning dataset, and superior results are reported when comparing to state-of-the-art approaches. More remarkably, GCN-LSTM increases CIDEr-D performance from 120.1% to 128.7% on COCO testing set.

Existing attention mechanisms either attend to local image grid or object level features for Visual Question Answering (VQA). Motivated by the observation that questions can relate to both object instances and their parts, we propose a novel attention mechanism that jointly considers reciprocal relationships between the two levels of visual details. The bottom-up attention thus generated is further coalesced with the top-down information to only focus on the scene elements that are most relevant to a given question. Our design hierarchically fuses multi-modal information i.e., language, object- and gird-level features, through an efficient tensor decomposition scheme. The proposed model improves the state-of-the-art single model performances from 67.9% to 68.2% on VQAv1 and from 65.7% to 67.4% on VQAv2, demonstrating a significant boost.

Recently, Visual Question Answering (VQA) has emerged as one of the most significant tasks in multimodal learning as it requires understanding both visual and textual modalities. Existing methods mainly rely on extracting image and question features to learn their joint feature embedding via multimodal fusion or attention mechanism. Some recent studies utilize external VQA-independent models to detect candidate entities or attributes in images, which serve as semantic knowledge complementary to the VQA task. However, these candidate entities or attributes might be unrelated to the VQA task and have limited semantic capacities. To better utilize semantic knowledge in images, we propose a novel framework to learn visual relation facts for VQA. Specifically, we build up a Relation-VQA (R-VQA) dataset based on the Visual Genome dataset via a semantic similarity module, in which each data consists of an image, a corresponding question, a correct answer and a supporting relation fact. A well-defined relation detector is then adopted to predict visual question-related relation facts. We further propose a multi-step attention model composed of visual attention and semantic attention sequentially to extract related visual knowledge and semantic knowledge. We conduct comprehensive experiments on the two benchmark datasets, demonstrating that our model achieves state-of-the-art performance and verifying the benefit of considering visual relation facts.

Answering visual questions need acquire daily common knowledge and model the semantic connection among different parts in images, which is too difficult for VQA systems to learn from images with the only supervision from answers. Meanwhile, image captioning systems with beam search strategy tend to generate similar captions and fail to diversely describe images. To address the aforementioned issues, we present a system to have these two tasks compensate with each other, which is capable of jointly producing image captions and answering visual questions. In particular, we utilize question and image features to generate question-related captions and use the generated captions as additional features to provide new knowledge to the VQA system. For image captioning, our system attains more informative results in term of the relative improvements on VQA tasks as well as competitive results using automated metrics. Applying our system to the VQA tasks, our results on VQA v2 dataset achieve 65.8% using generated captions and 69.1% using annotated captions in validation set and 68.4% in the test-standard set. Further, an ensemble of 10 models results in 69.7% in the test-standard split.

Visual Question Answering (VQA) requires integration of feature maps with drastically different structures and focus of the correct regions. Image descriptors have structures at multiple spatial scales, while lexical inputs inherently follow a temporal sequence and naturally cluster into semantically different question types. A lot of previous works use complex models to extract feature representations but neglect to use high-level information summary such as question types in learning. In this work, we propose Question Type-guided Attention (QTA). It utilizes the information of question type to dynamically balance between bottom-up and top-down visual features, respectively extracted from ResNet and Faster R-CNN networks. We experiment with multiple VQA architectures with extensive input ablation studies over the TDIUC dataset and show that QTA systematically improves the performance by more than 5% across multiple question type categories such as "Activity Recognition", "Utility" and "Counting" on TDIUC dataset. By adding QTA on the state-of-art model MCB, we achieve 3% improvement for overall accuracy. Finally, we propose a multi-task extension to predict question types which generalizes QTA to applications that lack of question type, with minimal performance loss.

We propose an architecture for VQA which utilizes recurrent layers to generate visual and textual attention. The memory characteristic of the proposed recurrent attention units offers a rich joint embedding of visual and textual features and enables the model to reason relations between several parts of the image and question. Our single model outperforms the first place winner on the VQA 1.0 dataset, performs within margin to the current state-of-the-art ensemble model. We also experiment with replacing attention mechanisms in other state-of-the-art models with our implementation and show increased accuracy. In both cases, our recurrent attention mechanism improves performance in tasks requiring sequential or relational reasoning on the VQA dataset.

Visual Question Answering (VQA) has attracted attention from both computer vision and natural language processing communities. Most existing approaches adopt the pipeline of representing an image via pre-trained CNNs, and then using the uninterpretable CNN features in conjunction with the question to predict the answer. Although such end-to-end models might report promising performance, they rarely provide any insight, apart from the answer, into the VQA process. In this work, we propose to break up the end-to-end VQA into two steps: explaining and reasoning, in an attempt towards a more explainable VQA by shedding light on the intermediate results between these two steps. To that end, we first extract attributes and generate descriptions as explanations for an image using pre-trained attribute detectors and image captioning models, respectively. Next, a reasoning module utilizes these explanations in place of the image to infer an answer to the question. The advantages of such a breakdown include: (1) the attributes and captions can reflect what the system extracts from the image, thus can provide some explanations for the predicted answer; (2) these intermediate results can help us identify the inabilities of both the image understanding part and the answer inference part when the predicted answer is wrong. We conduct extensive experiments on a popular VQA dataset and dissect all results according to several measurements of the explanation quality. Our system achieves comparable performance with the state-of-the-art, yet with added benefits of explainability and the inherent ability to further improve with higher quality explanations.

北京阿比特科技有限公司