亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Temporal Knowledge Graph Completion (TKGC) under the extrapolation setting aims to predict the missing entity from a fact in the future, posing a challenge that aligns more closely with real-world prediction problems. Existing research mostly encodes entities and relations using sequential graph neural networks applied to recent snapshots. However, these approaches tend to overlook the ability to skip irrelevant snapshots according to entity-related relations in the query and disregard the importance of explicit temporal information. To address this, we propose our model, Re-Temp (Relation-Aware Temporal Representation Learning), which leverages explicit temporal embedding as input and incorporates skip information flow after each timestamp to skip unnecessary information for prediction. Additionally, we introduce a two-phase forward propagation method to prevent information leakage. Through the evaluation on six TKGC (extrapolation) datasets, we demonstrate that our model outperforms all eight recent state-of-the-art models by a significant margin.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Neural Networks · MoDELS · 示例 · 泛函 ·
2023 年 12 月 11 日

A new method called the Survival Beran-based Neural Importance Model (SurvBeNIM) is proposed. It aims to explain predictions of machine learning survival models, which are in the form of survival or cumulative hazard functions. The main idea behind SurvBeNIM is to extend the Beran estimator by incorporating the importance functions into its kernels and by implementing these importance functions as a set of neural networks which are jointly trained in an end-to-end manner. Two strategies of using and training the whole neural network implementing SurvBeNIM are proposed. The first one explains a single instance, and the neural network is trained for each explained instance. According to the second strategy, the neural network only learns once on all instances from the dataset and on all generated instances. Then the neural network is used to explain any instance in a dataset domain. Various numerical experiments compare the method with different existing explanation methods. A code implementing the proposed method is publicly available.

Planning safe trajectories in Autonomous Driving Systems (ADS) is a complex problem to solve in real-time. The main challenge to solve this problem arises from the various conditions and constraints imposed by road geometry, semantics and traffic rules, as well as the presence of dynamic agents. Recently, Model Predictive Path Integral (MPPI) has shown to be an effective framework for optimal motion planning and control in robot navigation in unstructured and highly uncertain environments. In this paper, we formulate the motion planning problem in ADS as a nonlinear stochastic dynamic optimization problem that can be solved using an MPPI strategy. The main technical contribution of this work is a method to handle obstacles within the MPPI formulation safely. In this method, obstacles are approximated by circles that can be easily integrated into the MPPI cost formulation while considering safety margins. The proposed MPPI framework has been efficiently implemented in our autonomous vehicle and experimentally validated using three different primitive scenarios. Experimental results show that generated trajectories are safe, feasible and perfectly achieve the planning objective. The video results as well as the open-source implementation are available at: //gitlab.uni.lu/360lab-public/mppi

The Spiking Neural Network (SNN), as one of the biologically inspired neural network infrastructures, has drawn increasing attention recently. It adopts binary spike activations to transmit information, thus the multiplications of activations and weights can be substituted by additions, which brings high energy efficiency. However, in the paper, we theoretically and experimentally prove that the binary spike activation map cannot carry enough information, thus causing information loss and resulting in accuracy decreasing. To handle the problem, we propose a ternary spike neuron to transmit information. The ternary spike neuron can also enjoy the event-driven and multiplication-free operation advantages of the binary spike neuron but will boost the information capacity. Furthermore, we also embed a trainable factor in the ternary spike neuron to learn the suitable spike amplitude, thus our SNN will adopt different spike amplitudes along layers, which can better suit the phenomenon that the membrane potential distributions are different along layers. To retain the efficiency of the vanilla ternary spike, the trainable ternary spike SNN will be converted to a standard one again via a re-parameterization technique in the inference. Extensive experiments with several popular network structures over static and dynamic datasets show that the ternary spike can consistently outperform state-of-the-art methods. Our code is open-sourced at //github.com/yfguo91/Ternary-Spike.

Generative Large Language Models (LLMs), such as ChatGPT, offer interactive APIs that can answer common questions at a human-expert level. However, these models often give inaccurate or incorrect responses when faced with questions requiring domain-specific or professional-specific knowledge not covered in their training corpus. Furthermore, many state-of-the-art LLMs are not open-source, making it challenging to inject knowledge with model APIs only. In this work, we introduce KnowGPT, a black-box knowledge injection framework for LLMs in question answering. KnowGPT leverages deep reinforcement learning (RL) to extract relevant knowledge from Knowledge Graphs (KGs) and use Multi-Armed Bandit (MAB) to construct the most suitable prompt for each question. Our extensive experiments on three benchmark datasets showcase that KnowGPT significantly enhances the existing methods. Notably, KnowGPT achieves an average improvement of 23.7% over ChatGPT and an average improvement of 2.9% over GPT-4. Additionally, KnowGPT attains a 91.6% accuracy on the OpenbookQA official leaderboard, which is comparable to human-level performance.

Multi-relation question answering (QA) is a challenging task, where given questions usually require long reasoning chains in KGs that consist of multiple relations. Recently, methods with explicit multi-step reasoning over KGs have been prominently used in this task and have demonstrated promising performance. Examples include methods that perform stepwise label propagation through KG triples and methods that navigate over KG triples based on reinforcement learning. A main weakness of these methods is that their reasoning mechanisms are usually complex and difficult to implement or train. In this paper, we argue that multi-relation QA can be achieved via end-to-end single-step implicit reasoning, which is simpler, more efficient, and easier to adopt. We propose QAGCN -- a Question-Aware Graph Convolutional Network (GCN)-based method that includes a novel GCN architecture with controlled question-dependent message propagation for the implicit reasoning. Extensive experiments have been conducted, where QAGCN achieved competitive and even superior performance compared to state-of-the-art explicit-reasoning methods.

With the recent spike in the number and availability of Large Language Models (LLMs), it has become increasingly important to provide large and realistic benchmarks for evaluating Knowledge Graph Question Answering (KGQA) systems. So far the majority of benchmarks rely on pattern-based SPARQL query generation approaches. The subsequent natural language (NL) question generation is conducted through crowdsourcing or other automated methods, such as rule-based paraphrasing or NL question templates. Although some of these datasets are of considerable size, their pitfall lies in their pattern-based generation approaches, which do not always generalize well to the vague and linguistically diverse questions asked by humans in real-world contexts. In this paper, we introduce Spider4SPARQL - a new SPARQL benchmark dataset featuring 9,693 previously existing manually generated NL questions and 4,721 unique, novel, and complex SPARQL queries of varying complexity. In addition to the NL/SPARQL pairs, we also provide their corresponding 166 knowledge graphs and ontologies, which cover 138 different domains. Our complex benchmark enables novel ways of evaluating the strengths and weaknesses of modern KGQA systems. We evaluate the system with state-of-the-art KGQA systems as well as LLMs, which achieve only up to 45\% execution accuracy, demonstrating that Spider4SPARQL is a challenging benchmark for future research.

We propose NeRFiller, an approach that completes missing portions of a 3D capture via generative 3D inpainting using off-the-shelf 2D visual generative models. Often parts of a captured 3D scene or object are missing due to mesh reconstruction failures or a lack of observations (e.g., contact regions, such as the bottom of objects, or hard-to-reach areas). We approach this challenging 3D inpainting problem by leveraging a 2D inpainting diffusion model. We identify a surprising behavior of these models, where they generate more 3D consistent inpaints when images form a 2$\times$2 grid, and show how to generalize this behavior to more than four images. We then present an iterative framework to distill these inpainted regions into a single consistent 3D scene. In contrast to related works, we focus on completing scenes rather than deleting foreground objects, and our approach does not require tight 2D object masks or text. We compare our approach to relevant baselines adapted to our setting on a variety of scenes, where NeRFiller creates the most 3D consistent and plausible scene completions. Our project page is at //ethanweber.me/nerfiller.

Despite the impressive feats demonstrated by Reinforcement Learning (RL), these algorithms have seen little adoption in high-risk, real-world applications due to current difficulties in explaining RL agent actions and building user trust. We present Counterfactual Demonstrations for Explanation (CODEX), a method that incorporates semantic clustering, which can effectively summarize RL agent behavior in the state-action space. Experimentation on the MiniGrid and StarCraft II gaming environments reveals the semantic clusters retain temporal as well as entity information, which is reflected in the constructed summary of agent behavior. Furthermore, clustering the discrete+continuous game-state latent representations identifies the most crucial episodic events, demonstrating a relationship between the latent and semantic spaces. This work contributes to the growing body of work that strives to unlock the power of RL for widespread use by leveraging and extending techniques from Natural Language Processing.

Large Language Models (LLMs) have demonstrated impressive inferential capabilities, with numerous research endeavors devoted to enhancing this capacity through prompting. Despite these efforts, a unified epistemological foundation is still conspicuously absent. Drawing inspiration from Kant's a priori philosophy, we propose the UPAR prompting framework, designed to emulate the structure of human cognition within LLMs. The UPAR framework is delineated into four phases: "Understand", "Plan", "Act", and "Reflect", enabling the extraction of structured information from complex contexts, prior planning of solutions, execution according to plan, and self-reflection. This structure significantly augments the explainability and accuracy of LLM inference, producing a human-understandable and inspectable inferential trajectory. Furthermore, our work offers an epistemological foundation for existing prompting techniques, allowing for a possible systematic integration of these methods. With GPT-4, our approach elevates the accuracy from COT baseline of 22.92% to 58.33% in a challenging subset of GSM8K, and from 67.91% to 75.40% in the causal judgment task. Without using few-shot examples or external tools, UPAR significantly outperforms existing prompting methods on SCIBENCH, a challenging dataset containing collegiate-level mathematics, chemistry, and physics scientific problems.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

北京阿比特科技有限公司