亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this contribution, we propose a data-driven procedure to fit quadratic-bilinear surrogate models from data. Although the dynamics characterizing the original model are strongly nonlinear, we rely on lifting techniques to embed the original model into a quadratic-bilinear format. Here, data represent generalized transfer function values. This method is an extension of methods that do bilinear, or quadratic inference, separately. It is based on first fitting a linear model with the classical Loewner framework, and then on inferring the best supplementing nonlinear operators, in a least-squares sense. The application scope of this method is given by electrical circuits with nonlinear components (such as diodes). We propose various test cases to illustrate the performance of the method.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 流形學習 · AIM · 向量化 · 學成 ·
2022 年 2 月 4 日

Modern sample points in many applications no longer comprise real vectors in a real vector space but sample points of much more complex structures, which may be represented as points in a space with a certain underlying geometric structure, namely a manifold. Manifold learning is an emerging field for learning the underlying structure. The study of manifold learning can be split into two main branches: dimension reduction and manifold fitting. With the aim of combining statistics and geometry, we address the problem of manifold fitting in the ambient space. Inspired by the relation between the eigenvalues of the Laplace-Beltrami operator and the geometry of a manifold, we aim to find a small set of points that preserve the geometry of the underlying manifold. From this relationship, we extend the idea of subsampling to sample points in high-dimensional space and employ the Moving Least Squares (MLS) approach to approximate the underlying manifold. We analyze the two core steps in our proposed method theoretically and also provide the bounds for the MLS approach. Our simulation results and theoretical analysis demonstrate the superiority of our method in estimating the underlying manifold.

The scattering of electromagnetic waves from obstacles with wave-material interaction in thin layers on the surface is described by generalized impedance boundary conditions, which provide effective approximate models. In particular, this includes a thin coating around a perfect conductor and the skin effect of a highly conducting material. The approach taken in this work is to derive, analyse and discretize a system of time-dependent boundary integral equations that determines the tangential traces of the scattered electric and magnetic fields. In a familiar second step, the fields are evaluated in the exterior domain by a representation formula, which uses the time-dependent potential operators of Maxwell's equations. The time-dependent boundary integral equationis discretized with Runge--Kutta based convolution quadrature in time and Raviart--Thomas boundary elements in space. Using the frequency-explicit bounds from the well-posedness analysis given here together with known approximation properties of the numerical methods, the full discretization is proved to be stable and convergent, with explicitly given rates in the case of sufficient regularity. Taking the same Runge--Kutta based convolution quadrature for discretizing the time-dependent representation formulas, the optimal order of convergence is obtained away from the scattering boundary, whereas an order reduction occurs close to the boundary. The theoretical results are illustrated by numerical experiments.

Black-box and preference-based optimization algorithms are global optimization procedures that aim to find the global solutions of an optimization problem using, respectively, the least amount of function evaluations or sample comparisons as possible. In the black-box case, the analytical expression of the objective function is unknown and it can only be evaluated through a (costly) computer simulation or an experiment. In the preference-based case, the objective function is still unknown but it corresponds to the subjective criterion of an individual. So, it is not possible to quantify such criterion in a reliable and consistent way. Therefore, preference-based optimization algorithms seek global solutions using only comparisons between couples of different samples, for which a human decision-maker indicates which of the two is preferred. Quite often, the black-box and preference-based frameworks are covered separately and are handled using different techniques. In this paper, we show that black-box and preference-based optimization problems are closely related and can be solved using the same family of approaches, namely surrogate-based methods. Moreover, we propose the generalized Metric Response Surface (gMRS) algorithm, an optimization scheme that is a generalization of the popular MSRS framework. Finally, we provide a convergence proof for the proposed optimization method.

Quantum Variational Circuits (QVCs) are often claimed as one of the most potent uses of both near term and long term quantum hardware. The standard approaches to optimizing these circuits rely on a classical system to compute the new parameters at every optimization step. However, this process can be extremely challenging both in terms of navigating the exponentially scaling complex Hilbert space, barren plateaus, and the noise present in all foreseeable quantum hardware. Although a variety of optimization algorithms are employed in practice, there is often a lack of theoretical or empirical motivations for this choice. To this end we empirically evaluate the potential of many common gradient and gradient free optimizers on a variety of optimization tasks. These tasks include both classical and quantum data based optimization routines. Our evaluations were conducted in both noise free and noisy simulations. The large number of problems and optimizers yields strong empirical guidance for choosing optimizers for QVCs that is currently lacking.

Determining the proper level of details to develop and solve physical models is usually difficult when one encounters new engineering problems. Such difficulty comes from how to balance the time (simulation cost) and accuracy for the physical model simulation afterwards. We propose a framework for automatic development of a family of surrogate models of physical systems that provide flexible cost-accuracy tradeoffs to assist making such determinations. We present both a model-based and a data-driven strategy to generate surrogate models. The former starts from a high-fidelity model generated from first principles and applies a bottom-up model order reduction (MOR) that preserves stability and convergence while providing a priori error bounds, although the resulting reduced-order model may lose its interpretability. The latter generates interpretable surrogate models by fitting artificial constitutive relations to a presupposed topological structure using experimental or simulation data. For the latter, we use Tonti diagrams to systematically produce differential equations from the assumed topological structure using algebraic topological semantics that are common to various lumped-parameter models (LPM). The parameter for the constitutive relations are estimated using standard system identification algorithms. Our framework is compatible with various spatial discretization schemes for distributed parameter models (DPM), and can supports solving engineering problems in different domains of physics.

This paper deals with the control of parasitism in variational integrators for degenerate Lagrangian systems by writing them as general linear methods. This enables us to calculate their parasitic growth parameters which are responsible for the loss of long-time energy conservation properties of these algorithms. As a remedy and to offset the effects of parasitism, the standard projection technique is then applied to the general linear methods to numerically preserve the invariants of the degenerate Lagrangian systems by projecting the solution onto the desired manifold.

We use persistent homology and persistence images as an observable of three different variants of the two-dimensional XY model in order to identify and study their phase transitions. We examine models with the classical XY action, a topological lattice action, and an action with an additional nematic term. In particular, we introduce a new way of computing the persistent homology of lattice spin model configurations and, by considering the fluctuations in the output of logistic regression and k-nearest neighbours models trained on persistence images, we develop a methodology to extract estimates of the critical temperature and the critical exponent of the correlation length. We put particular emphasis on finite-size scaling behaviour and producing estimates with quantifiable error. For each model we successfully identify its phase transition(s) and are able to get an accurate determination of the critical temperatures and critical exponents of the correlation length.

Much of the recent successes in Deep Reinforcement Learning have been based on minimizing the squared Bellman error. However, training is often unstable due to fast-changing target Q-values, and target networks are employed to regularize the Q-value estimation and stabilize training by using an additional set of lagging parameters. Despite their advantages, target networks are potentially an inflexible way to regularize Q-values which may ultimately slow down training. In this work, we address this issue by augmenting the squared Bellman error with a functional regularizer. Unlike target networks, the regularization we propose here is explicit and enables us to use up-to-date parameters as well as control the regularization. This leads to a faster yet more stable training method. We analyze the convergence of our method theoretically and empirically validate our predictions on simple environments as well as on a suite of Atari environments. We demonstrate empirical improvements over target network based methods in terms of both sample efficiency and performance. In summary, our approach provides a fast and stable alternative to replace the standard squared Bellman error

The area of Data Analytics on graphs promises a paradigm shift as we approach information processing of classes of data, which are typically acquired on irregular but structured domains (social networks, various ad-hoc sensor networks). Yet, despite its long history, current approaches mostly focus on the optimization of graphs themselves, rather than on directly inferring learning strategies, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. To fill this void, we first revisit graph topologies from a Data Analytics point of view, and establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral analysis of graphs, whereby the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices are shown to convey physical meaning related to both graph topology and higher-order graph properties, such as cuts, walks, paths, and neighborhoods. Next, to illustrate estimation strategies performed on graph signals, spectral analysis of graphs is introduced through eigenanalysis of mathematical descriptors of graphs and in a generic way. Finally, a framework for vertex clustering and graph segmentation is established based on graph spectral representation (eigenanalysis) which illustrates the power of graphs in various data association tasks. The supporting examples demonstrate the promise of Graph Data Analytics in modeling structural and functional/semantic inferences. At the same time, Part I serves as a basis for Part II and Part III which deal with theory, methods and applications of processing Data on Graphs and Graph Topology Learning from data.

Recommender System (RS) is a hot area where artificial intelligence (AI) techniques can be effectively applied to improve performance. Since the well-known Netflix Challenge, collaborative filtering (CF) has become the most popular and effective recommendation method. Despite their success in CF, various AI techniques still have to face the data sparsity and cold start problems. Previous works tried to solve these two problems by utilizing auxiliary information, such as social connections among users and meta-data of items. However, they process different types of information separately, leading to information loss. In this work, we propose to utilize Heterogeneous Information Network (HIN), which is a natural and general representation of different types of data, to enhance CF-based recommending methods. HIN-based recommender systems face two problems: how to represent high-level semantics for recommendation and how to fuse the heterogeneous information to recommend. To address these problems, we propose to applying meta-graph to HIN-based RS and solve the information fusion problem with a "matrix factorization (MF) + factorization machine (FM)" framework. For the "MF" part, we obtain user-item similarity matrices from each meta-graph and adopt low-rank matrix approximation to get latent features for both users and items. For the "FM" part, we propose to apply FM with Group lasso (FMG) on the obtained features to simultaneously predict missing ratings and select useful meta-graphs. Experimental results on two large real-world datasets, i.e., Amazon and Yelp, show that our proposed approach is better than that of the state-of-the-art FM and other HIN-based recommending methods.

北京阿比特科技有限公司