亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Maximal Extractable Value (MEV) has emerged as a new frontier in the design of blockchain systems. In this paper, we propose making the MEV extraction rate as part of the protocol design space. Our aim is to leverage this parameter to maintain a healthy balance between block producers (who need to be compensated) and users (who need to feel encouraged to transact). We follow the approach introduced by EIP-1559 and design a similar mechanism to dynamically update the MEV extraction rate with the goal of stabilizing it at a target value. We study the properties of this dynamic mechanism and show that, while convergence to the target can be guaranteed for certain parameters, instability, and even chaos, can occur in other cases. Despite these complexities, under general conditions, the system concentrates in a neighborhood of the target equilibrium implying high long-term performance. Our work establishes, the first to our knowledge, dynamic framework for the integral problem of MEV sharing between extractors and users.

相關內容

設計是對現有狀的一種重新認識和打破重組的過程,設計讓一切變得更美。

In this paper, we propose a new deinterleaving method for mixtures of discrete renewal Markov chains. This method relies on the maximization of a penalized likelihood score. It exploits all available information about both the sequence of the different symbols and their arrival times. A theoretical analysis is carried out to prove that minimizing this score allows to recover the true partition of symbols in the large sample limit, under mild conditions on the component processes. This theoretical analysis is then validated by experiments on synthetic data. Finally, the method is applied to deinterleave pulse trains received from different emitters in a RESM (Radar Electronic Support Measurements) context and we show that the proposed method competes favorably with state-of-the-art methods on simulated warfare datasets.

In this paper we face the problem of representation of functional data with the tools of algebraic topology. We represent functions by means of merge trees, which, like the more commonly used persistence diagrams, are invariant under homeomorphic reparametrizations of the functions they represent, thus allowing for a statistical analysis which is indifferent to functional misalignment. We consider a recently defined metric for merge trees and we prove some theoretical results related to its specific implementation when merge trees represent functions, establishing also a class of consistent estimators with convergence rates. To showcase the good properties of our topological approach to functional data analysis, we test it on the Aneurisk65 dataset replicating, from our different perspective, the supervised classification analysis which contributed to make this dataset a benchmark for methods dealing with misaligned functional data. In the Appendix we provide an extensive comparison between merge trees and persistence diagrams, highlighting similarities and differences, which can guide the analyst in choosing between the two representations.

During the Second World War, estimates of the number of tanks deployed by Germany were critically needed. The Allies adopted a successful statistical approach to estimate this information: assuming that the tanks are sequentially numbered starting from 1, if we observe $k$ tanks from an unknown total of $N$, then the best linear unbiased estimator for $N$ is $M(1+1/k)-1$ where $M$ is the maximum observed serial number. However, in many situations, the original German Tank Problem is insufficient, since typically there are $l>1$ factories, and tanks produced by different factories may have serial numbers in disjoint ranges that are often far separated. Clark, Gonye and Miller presented an unbiased estimator for $N$ when the minimum serial number is unknown. Provided one identifies which samples correspond to which factory, one can then estimate each factory's range and summing the sizes of these ranges yields an estimate for the rival's total productivity. We construct an efficient procedure to estimate the total productivity and prove that it is effective when $\log l/\log k$ is sufficiently small. In the final section, we show that given information about the gaps, we can make an estimator that performs orders of magnitude better when we have a small number of samples.

In this paper, we introduce PASTA (Perceptual Assessment System for explanaTion of Artificial intelligence), a novel framework for a human-centric evaluation of XAI techniques in computer vision. Our first key contribution is a human evaluation of XAI explanations on four diverse datasets (COCO, Pascal Parts, Cats Dogs Cars, and MonumAI) which constitutes the first large-scale benchmark dataset for XAI, with annotations at both the image and concept levels. This dataset allows for robust evaluation and comparison across various XAI methods. Our second major contribution is a data-based metric for assessing the interpretability of explanations. It mimics human preferences, based on a database of human evaluations of explanations in the PASTA-dataset. With its dataset and metric, the PASTA framework provides consistent and reliable comparisons between XAI techniques, in a way that is scalable but still aligned with human evaluations. Additionally, our benchmark allows for comparisons between explanations across different modalities, an aspect previously unaddressed. Our findings indicate that humans tend to prefer saliency maps over other explanation types. Moreover, we provide evidence that human assessments show a low correlation with existing XAI metrics that are numerically simulated by probing the model.

The real-world data tends to be heavily imbalanced and severely skew the data-driven deep neural networks, which makes Long-Tailed Recognition (LTR) a massive challenging task. Existing LTR methods seldom train Vision Transformers (ViTs) with Long-Tailed (LT) data, while the off-the-shelf pretrain weight of ViTs always leads to unfair comparisons. In this paper, we systematically investigate the ViTs' performance in LTR and propose LiVT to train ViTs from scratch only with LT data. With the observation that ViTs suffer more severe LTR problems, we conduct Masked Generative Pretraining (MGP) to learn generalized features. With ample and solid evidence, we show that MGP is more robust than supervised manners. In addition, Binary Cross Entropy (BCE) loss, which shows conspicuous performance with ViTs, encounters predicaments in LTR. We further propose the balanced BCE to ameliorate it with strong theoretical groundings. Specially, we derive the unbiased extension of Sigmoid and compensate extra logit margins to deploy it. Our Bal-BCE contributes to the quick convergence of ViTs in just a few epochs. Extensive experiments demonstrate that with MGP and Bal-BCE, LiVT successfully trains ViTs well without any additional data and outperforms comparable state-of-the-art methods significantly, e.g., our ViT-B achieves 81.0% Top-1 accuracy in iNaturalist 2018 without bells and whistles. Code is available at //github.com/XuZhengzhuo/LiVT.

In this paper, we propose a novel Branching Reinforcement Learning (Branching RL) model, and investigate both Regret Minimization (RM) and Reward-Free Exploration (RFE) metrics for this model. Unlike standard RL where the trajectory of each episode is a single $H$-step path, branching RL allows an agent to take multiple base actions in a state such that transitions branch out to multiple successor states correspondingly, and thus it generates a tree-structured trajectory. This model finds important applications in hierarchical recommendation systems and online advertising. For branching RL, we establish new Bellman equations and key lemmas, i.e., branching value difference lemma and branching law of total variance, and also bound the total variance by only $O(H^2)$ under an exponentially-large trajectory. For RM and RFE metrics, we propose computationally efficient algorithms BranchVI and BranchRFE, respectively, and derive nearly matching upper and lower bounds. Our results are only polynomial in problem parameters despite exponentially-large trajectories.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Sequential recommendation aims to leverage users' historical behaviors to predict their next interaction. Existing works have not yet addressed two main challenges in sequential recommendation. First, user behaviors in their rich historical sequences are often implicit and noisy preference signals, they cannot sufficiently reflect users' actual preferences. In addition, users' dynamic preferences often change rapidly over time, and hence it is difficult to capture user patterns in their historical sequences. In this work, we propose a graph neural network model called SURGE (short for SeqUential Recommendation with Graph neural nEtworks) to address these two issues. Specifically, SURGE integrates different types of preferences in long-term user behaviors into clusters in the graph by re-constructing loose item sequences into tight item-item interest graphs based on metric learning. This helps explicitly distinguish users' core interests, by forming dense clusters in the interest graph. Then, we perform cluster-aware and query-aware graph convolutional propagation and graph pooling on the constructed graph. It dynamically fuses and extracts users' current activated core interests from noisy user behavior sequences. We conduct extensive experiments on both public and proprietary industrial datasets. Experimental results demonstrate significant performance gains of our proposed method compared to state-of-the-art methods. Further studies on sequence length confirm that our method can model long behavioral sequences effectively and efficiently.

In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司