亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the mathematical structure of the solution set (and its tangent space) to the matrix equation $G^*JG=J$ for a given square matrix $J$. In the language of pure mathematics, this is a Lie group which is the isometry group for a bilinear (or a sesquilinear) form. Generally these groups are described as intersections of a few special groups. The tangent space to $\{G: G^*JG=J \}$ consists of solutions to the linear matrix equation $X^*J+JX=0$. For the complex case, the solution set of this linear equation was computed by De Ter{\'a}n and Dopico. We found that on its own, the equation $X^*J+JX=0$ is hard to solve. By throwing into the mix the complementary linear equation $X^*J-JX=0$, we find that rather than increasing the complexity, we reduce the complexity. Not only is it possible to now solve the original problem, but we can approach the broader algebraic and geometric structure. One implication is that the two equations form an $\mathfrak{h}$ and $\mathfrak{m}$ pair familiar in the study of pseudo-Riemannian symmetric spaces. We explicitly demonstrate the computation of the solutions to the equation $X^*J\pm XJ=0$ for real and complex matrices. However, any real, complex or quaternionic case with an arbitrary involution (e.g., transpose, conjugate transpose, and the various quaternion transposes) can be effectively solved with the same strategy. We provide numerical examples and visualizations.

相關內容

What is the "right" topological invariant of a large point cloud X? Prior research has focused on estimating the full persistence diagram of X, a quantity that is very expensive to compute, unstable to outliers, and far from a sufficient statistic. We therefore propose that the correct invariant is not the persistence diagram of X, but rather the collection of persistence diagrams of many small subsets. This invariant, which we call "distributed persistence," is perfectly parallelizable, more stable to outliers, and has a rich inverse theory. The map from the space of point clouds (with the quasi-isometry metric) to the space of distributed persistence invariants (with the Hausdorff-Bottleneck distance) is a global quasi-isometry. This is a much stronger property than simply being injective, as it implies that the inverse of a small neighborhood is a small neighborhood, and is to our knowledge the only result of its kind in the TDA literature. Moreover, the quasi-isometry bounds depend on the size of the subsets taken, so that as the size of these subsets goes from small to large, the invariant interpolates between a purely geometric one and a topological one. Lastly, we note that our inverse results do not actually require considering all subsets of a fixed size (an enormous collection), but a relatively small collection satisfying certain covering properties that arise with high probability when randomly sampling subsets. These theoretical results are complemented by two synthetic experiments demonstrating the use of distributed persistence in practice.

We present a classical algorithm that, for any $D$-dimensional geometrically-local, quantum circuit $C$ of polylogarithmic-depth, and any bit string $x \in {0,1}^n$, can compute the quantity $|<x|C|0^{\otimes n}>|^2$ to within any inverse-polynomial additive error in quasi-polynomial time, for any fixed dimension $D$. This is an extension of the result [CC21], which originally proved this result for $D = 3$. To see why this is interesting, note that, while the $D = 1$ case of this result follows from standard use of Matrix Product States, known for decades, the $D = 2$ case required novel and interesting techniques introduced in [BGM19]. Extending to the case $D = 3$ was even more laborious and required further new techniques introduced in [CC21]. Our work here shows that, while handling each new dimension has historically required a new insight, and fixed algorithmic primitive, based on known techniques for $D \leq 3$, we can now handle any fixed dimension $D > 3$. Our algorithm uses the Divide-and-Conquer framework of [CC21] to approximate the desired quantity via several instantiations of the same problem type, each involving $D$-dimensional circuits on about half the number of qubits as the original. This division step is then applied recursively, until the width of the recursively decomposed circuits in the $D^{th}$ dimension is so small that they can effectively be regarded as $(D-1)$-dimensional problems by absorbing the small width in the $D^{th}$ dimension into the qudit structure at the cost of a moderate increase in runtime. The main technical challenge lies in ensuring that the more involved portions of the recursive circuit decomposition and error analysis from [CC21] still hold in higher dimensions, which requires small modifications to the analysis in some places.

This paper studies the problem of recovering the hidden vertex correspondence between two edge-correlated random graphs. We focus on the Gaussian model where the two graphs are complete graphs with correlated Gaussian weights and the Erd\H{o}s-R\'enyi model where the two graphs are subsampled from a common parent Erd\H{o}s-R\'enyi graph $\mathcal{G}(n,p)$. For dense graphs with $p=n^{-o(1)}$, we prove that there exists a sharp threshold, above which one can correctly match all but a vanishing fraction of vertices and below which correctly matching any positive fraction is impossible, a phenomenon known as the "all-or-nothing" phase transition. Even more strikingly, in the Gaussian setting, above the threshold all vertices can be exactly matched with high probability. In contrast, for sparse Erd\H{o}s-R\'enyi graphs with $p=n^{-\Theta(1)}$, we show that the all-or-nothing phenomenon no longer holds and we determine the thresholds up to a constant factor. Along the way, we also derive the sharp threshold for exact recovery, sharpening the existing results in Erd\H{o}s-R\'enyi graphs. The proof of the negative results builds upon a tight characterization of the mutual information based on the truncated second-moment computation and an "area theorem" that relates the mutual information to the integral of the reconstruction error. The positive results follows from a tight analysis of the maximum likelihood estimator that takes into account the cycle structure of the induced permutation on the edges.

We present a numerical method to model dynamical systems from data. We use the recently introduced method Scalable Probabilistic Approximation (SPA) to project points from a Euclidean space to convex polytopes and represent these projected states of a system in new, lower-dimensional coordinates denoting their position in the polytope. We then introduce a specific nonlinear transformation to construct a model of the dynamics in the polytope and to transform back into the original state space. To overcome the potential loss of information from the projection to a lower-dimensional polytope, we use memory in the sense of the delay-embedding theorem of Takens. By construction, our method produces stable models. We illustrate the capacity of the method to reproduce even chaotic dynamics and attractors with multiple connected components on various examples.

We show $\textsf{EOPL}=\textsf{PLS}\cap\textsf{PPAD}$. Here the class $\textsf{EOPL}$ consists of all total search problems that reduce to the End-of-Potential-Line problem, which was introduced in the works by Hubacek and Yogev (SICOMP 2020) and Fearnley et al. (JCSS 2020). In particular, our result yields a new simpler proof of the breakthrough collapse $\textsf{CLS}=\textsf{PLS}\cap\textsf{PPAD}$ by Fearnley et al. (STOC 2021). We also prove a companion result $\textsf{SOPL}=\textsf{PLS}\cap\textsf{PPADS}$, where $\textsf{SOPL}$ is the class associated with the Sink-of-Potential-Line problem.

$\newcommand{\NP}{\mathsf{NP}}\newcommand{\GapSVP}{\textrm{GapSVP}}$We give a simple proof that the (approximate, decisional) Shortest Vector Problem is $\NP$-hard under a randomized reduction. Specifically, we show that for any $p \geq 1$ and any constant $\gamma < 2^{1/p}$, the $\gamma$-approximate problem in the $\ell_p$ norm ($\gamma$-$\GapSVP_p$) is not in $\mathsf{RP}$ unless $\NP \subseteq \mathsf{RP}$. Our proof follows an approach pioneered by Ajtai (STOC 1998), and strengthened by Micciancio (FOCS 1998 and SICOMP 2000), for showing hardness of $\gamma$-$\GapSVP_p$ using locally dense lattices. We construct such lattices simply by applying "Construction A" to Reed-Solomon codes with suitable parameters, and prove their local density via an elementary argument originally used in the context of Craig lattices. As in all known $\NP$-hardness results for $\GapSVP_p$ with $p < \infty$, our reduction uses randomness. Indeed, it is a notorious open problem to prove $\NP$-hardness via a deterministic reduction. To this end, we additionally discuss potential directions and associated challenges for derandomizing our reduction. In particular, we show that a close deterministic analogue of our local density construction would improve on the state-of-the-art explicit Reed-Solomon list-decoding lower bounds of Guruswami and Rudra (STOC 2005 and IEEE Trans. Inf. Theory 2006). As a related contribution of independent interest, we also give a polynomial-time algorithm for decoding $n$-dimensional "Construction A Reed-Solomon lattices" (with different parameters than those used in our hardness proof) to a distance within an $O(\sqrt{\log n})$ factor of Minkowski's bound. This asymptotically matches the best known distance for decoding near Minkowski's bound, due to Mook and Peikert (IEEE Trans. Inf. Theory 2022), whose work we build on with a somewhat simpler construction and analysis.

Neural networks are increasingly being used to solve partial differential equations (PDEs), replacing slower numerical solvers. However, a critical issue is that neural PDE solvers require high-quality ground truth data, which usually must come from the very solvers they are designed to replace. Thus, we are presented with a proverbial chicken-and-egg problem. In this paper, we present a method, which can partially alleviate this problem, by improving neural PDE solver sample complexity -- Lie point symmetry data augmentation (LPSDA). In the context of PDEs, it turns out that we are able to quantitatively derive an exhaustive list of data transformations, based on the Lie point symmetry group of the PDEs in question, something not possible in other application areas. We present this framework and demonstrate how it can easily be deployed to improve neural PDE solver sample complexity by an order of magnitude.

In distributional reinforcement learning not only expected returns but the complete return distributions of a policy are taken into account. The return distribution for a fixed policy is given as the solution of an associated distributional Bellman equation. In this note we consider general distributional Bellman equations and study existence and uniqueness of their solutions as well as tail properties of return distributions. We give necessary and sufficient conditions for existence and uniqueness of return distributions and identify cases of regular variation. We link distributional Bellman equations to multivariate affine distributional equations. We show that any solution of a distributional Bellman equation can be obtained as the vector of marginal laws of a solution to a multivariate affine distributional equation. This makes the general theory of such equations applicable to the distributional reinforcement learning setting.

We investigate the Membership Problem for hypergeometric sequences: given a hypergeometric sequence $\langle u_n \rangle_{n=0}^\infty$ of rational numbers and a target $t \in \mathbb{Q}$, decide whether $t$ occurs in the sequence. We show decidability of this problem under the assumption that in the defining recurrence $p(n)u_{n+1}=q(n)u_n$, the roots of the polynomials $p(x)$ and $q(x)$ are all rational numbers. Our proof relies on bounds on the density of primes in arithmetic progressions. We also observe a relationship between the decidability of the Membership problem (and variants) and the Rohrlich-Lang conjecture in transcendence theory.

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

北京阿比特科技有限公司