亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Social platforms are evolving at a rapid pace. With the addition of new features like real-time audio, the landscape of online communities and moderation work on these communities is being out-paced by platform development. In this paper, we present a novel framework that allows us to represent the dynamic moderation ecosystems of social platforms using a base-set of 12 platform-level affordances, along with inter-affordance relationships. These affordances fall into the three categories -- Members, Infrastructure, and Content. We call this the MIC framework, and apply MIC to analyze several social platforms in two case studies. First we analyze individual platforms using MIC and demonstrate how MIC can be used to examine the effects of platform changes on the moderation ecosystem and identify potential new challenges in moderation. Next, we systematically compare three platforms using MIC and propose potential moderation mechanisms that platforms can adapt from one another. Moderation researchers and platform designers can use such comparisons to uncover where platforms can emulate established, successful and better-studied platforms, as well as learn from the pitfalls other platforms have encountered.

相關內容

Context. Technical Debt (TD) is a metaphor for technical problems that are not visible to users and customers but hinder developers in their work, making future changes more difficult. TD is often incurred due to tight project deadlines and can make future changes more costly or impossible. Project Management usually focuses on customer benefits and pays less attention to their IT systems' internal quality. TD prevention should be preferred over TD repayment because subsequent refactoring and re-engineering are expensive. Objective. This paper evaluates a framework focusing on both TD prevention and TD repayment in the context of agile-managed projects. The framework was developed and applied in an IT unit of a publishing house. The unique contribution of this framework is the integration of TD management into project management. Method. The evaluation was performed as a comparative case study based on ticket statistics and two structured surveys. The surveys were conducted in the observed IT unit using the framework and a comparison unit not using the framework. The first survey targeted team members, the second one IT managers. Results. The evaluation shows that in this IT unit, the TAP framework led to a raised awareness for the incurrence of TD. Decisions to incur TD are intentional, and TD is repaid timelier. Unintentional TD incurred by unconscious decisions is prevented. Furthermore, better communication and better planning of the project pipeline can be observed. Conclusions. We provide an insight into practitioners' ways to identify, monitor, prevent and repay TD. The presented framework includes a feasible method for TD prevention despite tight timelines by making TD repayment part of project management.

Colorectal cancer (CRC) is one of the most common fatal cancer in the world. Polypectomy can effectively interrupt the progression of adenoma to adenocarcinoma, thus reducing the risk of CRC development. Colonoscopy is the primary method to find colonic polyps. However, due to the different sizes of polyps and the unclear boundary between polyps and their surrounding mucosa, it is challenging to segment polyps accurately. To address this problem, we design a Boundary Distribution Guided Network (BDG-Net) for accurate polyp segmentation. Specifically, under the supervision of the ideal Boundary Distribution Map (BDM), we use Boundary Distribution Generate Module (BDGM) to aggregate high-level features and generate BDM. Then, BDM is sent to the Boundary Distribution Guided Decoder (BDGD) as complementary spatial information to guide the polyp segmentation. Moreover, a multi-scale feature interaction strategy is adopted in BDGD to improve the segmentation accuracy of polyps with different sizes. Extensive quantitative and qualitative evaluations demonstrate the effectiveness of our model, which outperforms state-of-the-art models remarkably on five public polyp datasets while maintaining low computational complexity. Code: //github.com/zihuanqiu/BDG-Net

Perceiving and interacting with 3D articulated objects, such as cabinets, doors, and faucets, pose particular challenges for future home-assistant robots performing daily tasks in human environments. Besides parsing the articulated parts and joint parameters, researchers recently advocate learning manipulation affordance over the input shape geometry which is more task-aware and geometrically fine-grained. However, taking only passive observations as inputs, these methods ignore many hidden but important kinematic constraints (e.g., joint location and limits) and dynamic factors (e.g., joint friction and restitution), therefore losing significant accuracy for test cases with such uncertainties. In this paper, we propose a novel framework, named AdaAfford, that learns to perform very few test-time interactions for quickly adapting the affordance priors to more accurate instance-specific posteriors. We conduct large-scale experiments using the PartNet-Mobility dataset and prove that our system performs better than baselines.

Human-AI co-creativity involves both humans and AI collaborating on a shared creative product as partners. In a creative collaboration, interaction dynamics, such as turn-taking, contribution type, and communication, are the driving forces of the co-creative process. Therefore the interaction model is a critical and essential component for effective co-creative systems. There is relatively little research about interaction design in the co-creativity field, which is reflected in a lack of focus on interaction design in many existing co-creative systems. The primary focus of co-creativity research has been on the abilities of the AI. This paper focuses on the importance of interaction design in co-creative systems with the development of the Co-Creative Framework for Interaction design (COFI) that describes the broad scope of possibilities for interaction design in co-creative systems. Researchers can use COFI for modeling interaction in co-creative systems by exploring alternatives in this design space of interaction. COFI can also be beneficial while investigating and interpreting the interaction design of existing co-creative systems. We coded a dataset of existing 92 co-creative systems using COFI and analyzed the data to show how COFI provides a basis to categorize the interaction models of existing co-creative systems. We identify opportunities to shift the focus of interaction models in co-creativity to enable more communication between the user and AI leading to human-AI partnerships.

Online review systems are the primary means through which many businesses seek to build the brand and spread their messages. Prior research studying the effects of online reviews has been mainly focused on a single numerical cause, e.g., ratings or sentiment scores. We argue that such notions of causes entail three key limitations: they solely consider the effects of single numerical causes and ignore different effects of multiple aspects -- e.g., Food, Service -- embedded in the textual reviews; they assume the absence of hidden confounders in observational studies, e.g., consumers' personal preferences; and they overlook the indirect effects of numerical causes that can potentially cancel out the effect of textual reviews on business revenue. We thereby propose an alternative perspective to this single-cause-based effect estimation of online reviews: in the presence of hidden confounders, we consider multi-aspect textual reviews, particularly, their total effects on business revenue and direct effects with the numerical cause -- ratings -- being the mediator. We draw on recent advances in machine learning and causal inference to together estimate the hidden confounders and causal effects. We present empirical evaluations using real-world examples to discuss the importance and implications of differentiating the multi-aspect effects in strategizing business operations.

Recommender systems aim to recommend new items to users by learning user and item representations. In practice, these representations are highly entangled as they consist of information about multiple factors, including user's interests, item attributes along with confounding factors such as user conformity, and item popularity. Considering these entangled representations for inferring user preference may lead to biased recommendations (e.g., when the recommender model recommends popular items even if they do not align with the user's interests). Recent research proposes to debias by modeling a recommender system from a causal perspective. The exposure and the ratings are analogous to the treatment and the outcome in the causal inference framework, respectively. The critical challenge in this setting is accounting for the hidden confounders. These confounders are unobserved, making it hard to measure them. On the other hand, since these confounders affect both the exposure and the ratings, it is essential to account for them in generating debiased recommendations. To better approximate hidden confounders, we propose to leverage network information (i.e., user-social and user-item networks), which are shown to influence how users discover and interact with an item. Aside from the user conformity, aspects of confounding such as item popularity present in the network information is also captured in our method with the aid of \textit{causal disentanglement} which unravels the learned representations into independent factors that are responsible for (a) modeling the exposure of an item to the user, (b) predicting the ratings, and (c) controlling the hidden confounders. Experiments on real-world datasets validate the effectiveness of the proposed model for debiasing recommender systems.

Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.

Reinforcement learning is one of the core components in designing an artificial intelligent system emphasizing real-time response. Reinforcement learning influences the system to take actions within an arbitrary environment either having previous knowledge about the environment model or not. In this paper, we present a comprehensive study on Reinforcement Learning focusing on various dimensions including challenges, the recent development of different state-of-the-art techniques, and future directions. The fundamental objective of this paper is to provide a framework for the presentation of available methods of reinforcement learning that is informative enough and simple to follow for the new researchers and academics in this domain considering the latest concerns. First, we illustrated the core techniques of reinforcement learning in an easily understandable and comparable way. Finally, we analyzed and depicted the recent developments in reinforcement learning approaches. My analysis pointed out that most of the models focused on tuning policy values rather than tuning other things in a particular state of reasoning.

Driven by the visions of Internet of Things and 5G communications, the edge computing systems integrate computing, storage and network resources at the edge of the network to provide computing infrastructure, enabling developers to quickly develop and deploy edge applications. Nowadays the edge computing systems have received widespread attention in both industry and academia. To explore new research opportunities and assist users in selecting suitable edge computing systems for specific applications, this survey paper provides a comprehensive overview of the existing edge computing systems and introduces representative projects. A comparison of open source tools is presented according to their applicability. Finally, we highlight energy efficiency and deep learning optimization of edge computing systems. Open issues for analyzing and designing an edge computing system are also studied in this survey.

北京阿比特科技有限公司