We address the problem of network calibration adjusting miscalibrated confidences of deep neural networks. Many approaches to network calibration adopt a regularization-based method that exploits a regularization term to smooth the miscalibrated confidences. Although these approaches have shown the effectiveness on calibrating the networks, there is still a lack of understanding on the underlying principles of regularization in terms of network calibration. We present in this paper an in-depth analysis of existing regularization-based methods, providing a better understanding on how they affect to network calibration. Specifically, we have observed that 1) the regularization-based methods can be interpreted as variants of label smoothing, and 2) they do not always behave desirably. Based on the analysis, we introduce a novel loss function, dubbed ACLS, that unifies the merits of existing regularization methods, while avoiding the limitations. We show extensive experimental results for image classification and semantic segmentation on standard benchmarks, including CIFAR10, Tiny-ImageNet, ImageNet, and PASCAL VOC, demonstrating the effectiveness of our loss function.
Improving the interpretability of deep neural networks has recently gained increased attention, especially when the power of deep learning is leveraged to solve problems in physics. Interpretability helps us understand a model's ability to generalize and reveal its limitations. In this paper, we introduce a causal interpretable deep structure for modeling dynamic systems. Our proposed model makes use of the harmonic analysis by modeling the system in a time-frequency domain while maintaining high temporal and spectral resolution. Moreover, the model is built in an order recursive manner which allows for fast, robust, and exact second order optimization without the need for an explicit Hessian calculation. To circumvent the resulting high dimensionality of the building blocks of our system, a neural network is designed to identify the frequency interdependencies. The proposed model is illustrated and validated on nonlinear system identification problems as required for audio signal processing tasks. Crowd-sourced experimentation contrasting the performance of the proposed approach to other state-of-the-art solutions on an acoustic echo cancellation scenario confirms the effectiveness of our method for real-life applications.
The execution of deep neural network (DNN) algorithms suffers from significant bottlenecks due to the separation of the processing and memory units in traditional computer systems. Emerging memristive computing systems introduce an in situ approach that overcomes this bottleneck. The non-volatility of memristive devices, however, may expose the DNN weights stored in memristive crossbars to potential theft attacks. Therefore, this paper proposes a two-dimensional permutation-based protection (TDPP) method that thwarts such attacks. We first introduce the underlying concept that motivates the TDPP method: permuting both the rows and columns of the DNN weight matrices. This contrasts with previous methods, which focused solely on permuting a single dimension of the weight matrices, either the rows or columns. While it's possible for an adversary to access the matrix values, the original arrangement of rows and columns in the matrices remains concealed. As a result, the extracted DNN model from the accessed matrix values would fail to operate correctly. We consider two different memristive computing systems (designed for layer-by-layer and layer-parallel processing, respectively) and demonstrate the design of the TDPP method that could be embedded into the two systems. Finally, we present a security analysis. Our experiments demonstrate that TDPP can achieve comparable effectiveness to prior approaches, with a high level of security when appropriately parameterized. In addition, TDPP is more scalable than previous methods and results in reduced area and power overheads. The area and power are reduced by, respectively, 1218$\times$ and 2815$\times$ for the layer-by-layer system and by 178$\times$ and 203$\times$ for the layer-parallel system compared to prior works.
The study of universal approximation properties (UAP) for neural networks (NN) has a long history. When the network width is unlimited, only a single hidden layer is sufficient for UAP. In contrast, when the depth is unlimited, the width for UAP needs to be not less than the critical width $w^*_{\min}=\max(d_x,d_y)$, where $d_x$ and $d_y$ are the dimensions of the input and output, respectively. Recently, \cite{cai2022achieve} shows that a leaky-ReLU NN with this critical width can achieve UAP for $L^p$ functions on a compact domain $K$, \emph{i.e.,} the UAP for $L^p(K,\mathbb{R}^{d_y})$. This paper examines a uniform UAP for the function class $C(K,\mathbb{R}^{d_y})$ and gives the exact minimum width of the leaky-ReLU NN as $w_{\min}=\max(d_x+1,d_y)+1_{d_y=d_x+1:2d_x}$, which involves the effects of the output dimensions. To obtain this result, we propose a novel lift-flow-discretization approach that shows that the uniform UAP has a deep connection with topological theory.
Modern deep networks are highly complex and their inferential outcome very hard to interpret. This is a serious obstacle to their transparent deployment in safety-critical or bias-aware applications. This work contributes to post-hoc interpretability, and specifically Network Dissection. Our goal is to present a framework that makes it easier to discover the individual functionality of each neuron in a network trained on a vision task; discovery is performed in terms of textual description generation. To achieve this objective, we leverage: (i) recent advances in multimodal vision-text models and (ii) network layers founded upon the novel concept of stochastic local competition between linear units. In this setting, only a small subset of layer neurons are activated for a given input, leading to extremely high activation sparsity (as low as only $\approx 4\%$). Crucially, our proposed method infers (sparse) neuron activation patterns that enables the neurons to activate/specialize to inputs with specific characteristics, diversifying their individual functionality. This capacity of our method supercharges the potential of dissection processes: human understandable descriptions are generated only for the very few active neurons, thus facilitating the direct investigation of the network's decision process. As we experimentally show, our approach: (i) yields Vision Networks that retain or improve classification performance, and (ii) realizes a principled framework for text-based description and examination of the generated neuronal representations.
The inherent diversity of computation types within individual deep neural network (DNN) models necessitates a corresponding variety of computation units within hardware processors, leading to a significant constraint on computation efficiency during neural network execution. In this study, we introduce NeuralMatrix, a framework that transforms the computation of entire DNNs into linear matrix operations, effectively enabling their execution with one general-purpose matrix multiplication (GEMM) accelerator. By surmounting the constraints posed by the diverse computation types required by individual network models, this approach provides both generality, allowing a wide range of DNN models to be executed using a single GEMM accelerator and application-specific acceleration levels without extra special function units, which are validated through main stream DNNs and their variant models.
In most works on deep incremental learning research, it is assumed that novel samples are pre-identified for neural network retraining. However, practical deep classifiers often misidentify these samples, leading to erroneous predictions. Such misclassifications can degrade model performance. Techniques like open set recognition offer a means to detect these novel samples, representing a significant area in the machine learning domain. In this paper, we introduce a deep class-incremental learning framework integrated with open set recognition. Our approach refines class-incrementally learned features to adapt them for distance-based open set recognition. Experimental results validate that our method outperforms state-of-the-art incremental learning techniques and exhibits superior performance in open set recognition compared to baseline methods.
Convolutional neural networks have made significant progresses in edge detection by progressively exploring the context and semantic features. However, local details are gradually suppressed with the enlarging of receptive fields. Recently, vision transformer has shown excellent capability in capturing long-range dependencies. Inspired by this, we propose a novel transformer-based edge detector, \emph{Edge Detection TransformER (EDTER)}, to extract clear and crisp object boundaries and meaningful edges by exploiting the full image context information and detailed local cues simultaneously. EDTER works in two stages. In Stage I, a global transformer encoder is used to capture long-range global context on coarse-grained image patches. Then in Stage II, a local transformer encoder works on fine-grained patches to excavate the short-range local cues. Each transformer encoder is followed by an elaborately designed Bi-directional Multi-Level Aggregation decoder to achieve high-resolution features. Finally, the global context and local cues are combined by a Feature Fusion Module and fed into a decision head for edge prediction. Extensive experiments on BSDS500, NYUDv2, and Multicue demonstrate the superiority of EDTER in comparison with state-of-the-arts.
Ensembles over neural network weights trained from different random initialization, known as deep ensembles, achieve state-of-the-art accuracy and calibration. The recently introduced batch ensembles provide a drop-in replacement that is more parameter efficient. In this paper, we design ensembles not only over weights, but over hyperparameters to improve the state of the art in both settings. For best performance independent of budget, we propose hyper-deep ensembles, a simple procedure that involves a random search over different hyperparameters, themselves stratified across multiple random initializations. Its strong performance highlights the benefit of combining models with both weight and hyperparameter diversity. We further propose a parameter efficient version, hyper-batch ensembles, which builds on the layer structure of batch ensembles and self-tuning networks. The computational and memory costs of our method are notably lower than typical ensembles. On image classification tasks, with MLP, LeNet, and Wide ResNet 28-10 architectures, our methodology improves upon both deep and batch ensembles.
A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.
Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.