We establish an entropic, quantum central limit theorem and quantum inverse sumset theorem in discrete-variable quantum systems describing qudits or qubits. Both results are enabled by using our recently-discovered quantum convolution. We show that the exponential rate of convergence of the entropic central limit theorem is bounded by the magic gap. We also establish an ``quantum, entropic inverse sumset theorem,'' by introducing a quantum doubling constant. Furthermore, we introduce a ``quantum Ruzsa divergence'', and we pose a conjecture called ``convolutional strong subaddivity,'' which leads to the triangle inequality for the quantum Ruzsa divergence. A byproduct of this work is a magic measure to quantify the nonstabilizer nature of a state, based on the quantum Ruzsa divergence.
We consider estimating a matrix from noisy observations coming from an arbitrary additive bi- rotational invariant perturbation. We propose an estimator which is optimal among the class of rectangular rotational invariant estimators and can be applied irrespective of the prior on the signal. For the particular case of Gaussian noise, we prove the optimality of the proposed estimator, and we find an explicit expression for the MMSE in terms of the limiting singular value distribution of the observation matrix. Moreover, we prove a formula linking the asymptotic mutual information and the limit of a log-spherical integral of rectangular matrices. We also provide numerical checks for our results for general bi-rotational invariant noise, as well as Gaussian noise, which match our theoretical predictions.
Additive codes and some nonadditive codes use the single and multiple invariant subspaces of the stabilizer G to construct quantum codes, respectively, so the selection of invariant subspaces is a key issue. In this letter, I provide the necessary and sufficient conditions for this problem and, for the first time, establish the quotient space codes to construct quantum codes. This new code unifies additive codes and codeword stabilized codes and can transmit classical codewords. New bounds for quantum codes are presented also, and a simple proof of the quantum Singleton bound is provided. The quotient space approach offers a concise and clear mathematical form for the study of quantum error-correcting codes.
Flexible modeling of the entire distribution as a function of covariates is an important generalization of mean-based regression that has seen growing interest over the past decades in both the statistics and machine learning literature. This review outlines selected state-of-the-art statistical approaches to distributional regression, complemented with alternatives from machine learning. Topics covered include the similarities and differences between these approaches, extensions, properties and limitations, estimation procedures, and the availability of software. In view of the increasing complexity and availability of large-scale data, this review also discusses the scalability of traditional estimation methods, current trends, and open challenges. Illustrations are provided using data on childhood malnutrition in Nigeria and Australian electricity prices.
Numerical nonlinear algebra is a computational paradigm that uses numerical analysis to study polynomial equations. Its origins were methods to solve systems of polynomial equations based on the classical theorem of B\'ezout. This was decisively linked to modern developments in algebraic geometry by the polyhedral homotopy algorithm of Huber and Sturmfels, which exploits the combinatorial structure of the equations and led to efficient software for solving polynomial equations. Subsequent growth of numerical nonlinear algebra continues to be informed by algebraic geometry and its applications. These include new approaches to solving, algorithms for studying positive-dimensional varieties, certification, and a range of applications both within mathematics and from other disciplines. With new implementations, numerical nonlinear algebra is now a fundamental computational tool for algebraic geometry and its applications. We survey some of these innovations and some recent applications.
In this article we introduce an algorithm for mitigating the adverse effects of noise on gradient descent in variational quantum algorithms. This is accomplished by computing a {\emph{regularized}} local classical approximation to the objective function at every gradient descent step. The computational overhead of our algorithm is entirely classical, i.e., the number of circuit evaluations is exactly the same as when carrying out gradient descent using the parameter-shift rules. We empirically demonstrate the advantages offered by our algorithm on randomized parametrized quantum circuits.
Analyzing spatial varying effect is pivotal in geographic analysis. Yet, accurately capturing and interpreting this variability is challenging due to the complexity and non-linearity of geospatial data. Herein, we introduce an integrated framework that merges local spatial weighting scheme, Explainable Artificial Intelligence (XAI), and cutting-edge machine learning technologies to bridge the gap between traditional geographic analysis models and general machine learning approaches. Through tests on synthetic datasets, this framework is verified to enhance the interpretability and accuracy of predictions in both geographic regression and classification by elucidating spatial variability. It significantly boosts prediction precision, offering a novel approach to understanding spatial phenomena.
An equation based reduced order model applicable to generalized heat equation and thermal simulations of power electronics systems developed in commercial CFD tools, is presented in this work. The model considers the physics of heat transfer between multiple objects in different mediums and presents a set of equations that can be applied to a wide range of heat transfer scenarios including conduction, natural and forced convection problems. A few case studies including heat transfer in a power electronic system are simulated in Ansys Icepak and the temperatures from the simulations are compared with the temperatures predicted by the models. The models are observed to be highly accurate when compared with the simulations. The predictive model described in this work reduces large complex simulations down to a few parameters which tremendously improves the computation speed, uses very low physical disk space and enables fast evaluation of thermal performance of the system for any changes in the input parameters.
We prove lower bounds on the error of any estimator for the mean of a real probability distribution under the knowledge that the distribution belongs to a given set. We apply these lower bounds both to parametric and nonparametric estimation. In the nonparametric case, we apply our results to the question of sub-Gaussian estimation for distributions with finite variance to obtain new lower bounds in the small error probability regime, and present an optimal estimator in that regime. In the (semi-)parametric case, we use the Fisher information to provide distribution-dependent lower bounds that are constant-tight asymptotically, of order $\sqrt{2\log(1/\delta)/(nI)}$ where $I$ is the Fisher information of the distribution. We use known minimizers of the Fisher information on some nonparametric set of distributions to give lower bounds in cases such as corrupted distributions, or bounded/semi-bounded distributions.
Contrastive learning models have achieved great success in unsupervised visual representation learning, which maximize the similarities between feature representations of different views of the same image, while minimize the similarities between feature representations of views of different images. In text summarization, the output summary is a shorter form of the input document and they have similar meanings. In this paper, we propose a contrastive learning model for supervised abstractive text summarization, where we view a document, its gold summary and its model generated summaries as different views of the same mean representation and maximize the similarities between them during training. We improve over a strong sequence-to-sequence text generation model (i.e., BART) on three different summarization datasets. Human evaluation also shows that our model achieves better faithfulness ratings compared to its counterpart without contrastive objectives.
Humans perceive the world by concurrently processing and fusing high-dimensional inputs from multiple modalities such as vision and audio. Machine perception models, in stark contrast, are typically modality-specific and optimised for unimodal benchmarks, and hence late-stage fusion of final representations or predictions from each modality (`late-fusion') is still a dominant paradigm for multimodal video classification. Instead, we introduce a novel transformer based architecture that uses `fusion bottlenecks' for modality fusion at multiple layers. Compared to traditional pairwise self-attention, our model forces information between different modalities to pass through a small number of bottleneck latents, requiring the model to collate and condense the most relevant information in each modality and only share what is necessary. We find that such a strategy improves fusion performance, at the same time reducing computational cost. We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks including Audioset, Epic-Kitchens and VGGSound. All code and models will be released.