亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Defect inspection is paramount within the closed-loop manufacturing system. However, existing datasets for defect inspection often lack precision and semantic granularity required for practical applications. In this paper, we introduce the Defect Spectrum, a comprehensive benchmark that offers precise, semantic-abundant, and large-scale annotations for a wide range of industrial defects. Building on four key industrial benchmarks, our dataset refines existing annotations and introduces rich semantic details, distinguishing multiple defect types within a single image. Furthermore, we introduce Defect-Gen, a two-stage diffusion-based generator designed to create high-quality and diverse defective images, even when working with limited datasets. The synthetic images generated by Defect-Gen significantly enhance the efficacy of defect inspection models. Overall, The Defect Spectrum dataset demonstrates its potential in defect inspection research, offering a solid platform for testing and refining advanced models.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
 Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

Recent work demonstrates that, after being fine-tuned on a high-quality instruction dataset, the resulting model can obtain impressive capabilities to address a wide range of tasks. However, existing methods for instruction data generation often produce duplicate data and are not controllable enough on data quality. In this paper, we extend the generalization of instruction tuning by classifying the instruction data to 4 code-related tasks and propose a LLM-based Generator-Discriminator data process framework to generate diverse, high-quality instruction data from open source code. Hence, we introduce CodeOcean, a dataset comprising 20,000 instruction instances across 4 universal code-related tasks,which is aimed at augmenting the effectiveness of instruction tuning and improving the generalization ability of fine-tuned model. Subsequently, we present WaveCoder, a fine-tuned Code LLM with Widespread And Versatile Enhanced instruction tuning. This model is specifically designed for enhancing instruction tuning of Code Language Models (LLMs). Our experiments demonstrate that Wavecoder models outperform other open-source models in terms of generalization ability across different code-related tasks at the same level of fine-tuning scale. Moreover, Wavecoder exhibits high efficiency in previous code generation tasks. This paper thus offers a significant contribution to the field of instruction data generation and fine-tuning models, providing new insights and tools for enhancing performance in code-related tasks.

As the size of the datasets getting larger, accurately annotating such datasets is becoming more impractical due to the expensiveness on both time and economy. Therefore, crowd-sourcing has been widely adopted to alleviate the cost of collecting labels, which also inevitably introduces label noise and eventually degrades the performance of the model. To learn from crowd-sourcing annotations, modeling the expertise of each annotator is a common but challenging paradigm, because the annotations collected by crowd-sourcing are usually highly-sparse. To alleviate this problem, we propose Coupled Confusion Correction (CCC), where two models are simultaneously trained to correct the confusion matrices learned by each other. Via bi-level optimization, the confusion matrices learned by one model can be corrected by the distilled data from the other. Moreover, we cluster the ``annotator groups'' who share similar expertise so that their confusion matrices could be corrected together. In this way, the expertise of the annotators, especially of those who provide seldom labels, could be better captured. Remarkably, we point out that the annotation sparsity not only means the average number of labels is low, but also there are always some annotators who provide very few labels, which is neglected by previous works when constructing synthetic crowd-sourcing annotations. Based on that, we propose to use Beta distribution to control the generation of the crowd-sourcing labels so that the synthetic annotations could be more consistent with the real-world ones. Extensive experiments are conducted on two types of synthetic datasets and three real-world datasets, the results of which demonstrate that CCC significantly outperforms state-of-the-art approaches.

Various heuristic objectives for modeling hand-object interaction have been proposed in past work. However, due to the lack of a cohesive framework, these objectives often possess a narrow scope of applicability and are limited by their efficiency or accuracy. In this paper, we propose HandyPriors, a unified and general pipeline for pose estimation in human-object interaction scenes by leveraging recent advances in differentiable physics and rendering. Our approach employs rendering priors to align with input images and segmentation masks along with physics priors to mitigate penetration and relative-sliding across frames. Furthermore, we present two alternatives for hand and object pose estimation. The optimization-based pose estimation achieves higher accuracy, while the filtering-based tracking, which utilizes the differentiable priors as dynamics and observation models, executes faster. We demonstrate that HandyPriors attains comparable or superior results in the pose estimation task, and that the differentiable physics module can predict contact information for pose refinement. We also show that our approach generalizes to perception tasks, including robotic hand manipulation and human-object pose estimation in the wild.

User attribute prediction is a crucial task in various industries. However, sharing user data across different organizations faces challenges due to privacy concerns and legal requirements regarding personally identifiable information. Regulations such as the General Data Protection Regulation (GDPR) in the European Union and the Personal Information Protection Law of the People's Republic of China impose restrictions on data sharing. To address the need for utilizing features from multiple clients while adhering to legal requirements, federated learning algorithms have been proposed. These algorithms aim to predict user attributes without directly sharing the data. However, existing approaches typically rely on matching users across companies, which can result in dishonest partners discovering user lists or the inability to utilize all available features. In this paper, we propose a novel algorithm for predicting user attributes without requiring user matching. Our approach involves training deep matrix factorization models on different clients and sharing only the item vectors. This allows us to predict user attributes without sharing the user vectors themselves. The algorithm is evaluated using the publicly available MovieLens dataset and demonstrate that it achieves similar performance to the FedAvg algorithm, reaching 96% of a single model's accuracy. The proposed algorithm is particularly well-suited for improving customer targeting and enhancing the overall customer experience. This paper presents a valuable contribution to the field of user attribute prediction by offering a novel algorithm that addresses some of the most pressing privacy concerns in this area.

Deformable linear object (DLO) manipulation is needed in many fields. Previous research on deformable linear object (DLO) manipulation has primarily involved parallel jaw gripper manipulation with fixed grasping positions. However, the potential for dexterous manipulation of DLOs using an anthropomorphic hand is under-explored. We present DexDLO, a model-free framework that learns dexterous dynamic manipulation policies for deformable linear objects with a fixed-base dexterous hand in an end-to-end way. By abstracting several common DLO manipulation tasks into goal-conditioned tasks, our DexDLO can perform these tasks, such as DLO grabbing, DLO pulling, DLO end-tip position controlling, etc. Using the Mujoco physics simulator, we demonstrate that our framework can efficiently and effectively learn five different DLO manipulation tasks with the same framework parameters. We further provide a thorough analysis of learned policies, reward functions, and reduced observations for a comprehensive understanding of the framework.

We present a neural network for mitigating biased errors in pseudoranges to improve localization performance with data collected from mobile phones. A satellite-wise Multilayer Perceptron (MLP) is designed to regress the pseudorange bias correction from six satellite, receiver, context-related features derived from Android raw Global Navigation Satellite System (GNSS) measurements. To train the MLP, we carefully calculate the target values of pseudorange bias using location ground truth and smoothing techniques and optimize a loss function involving the estimation residuals of smartphone clock bias. The corrected pseudoranges are then used by a model-based localization engine to compute locations. The Google Smartphone Decimeter Challenge (GSDC) dataset, which contains Android smartphone data collected from both rural and urban areas, is utilized for evaluation. Both fingerprinting and cross-trace localization results demonstrate that our proposed method outperforms model-based and state-of-the-art data-driven approaches.

Multi-task reinforcement learning endeavors to accomplish a set of different tasks with a single policy. To enhance data efficiency by sharing parameters across multiple tasks, a common practice segments the network into distinct modules and trains a routing network to recombine these modules into task-specific policies. However, existing routing approaches employ a fixed number of modules for all tasks, neglecting that tasks with varying difficulties commonly require varying amounts of knowledge. This work presents a Dynamic Depth Routing (D2R) framework, which learns strategic skipping of certain intermediate modules, thereby flexibly choosing different numbers of modules for each task. Under this framework, we further introduce a ResRouting method to address the issue of disparate routing paths between behavior and target policies during off-policy training. In addition, we design an automatic route-balancing mechanism to encourage continued routing exploration for unmastered tasks without disturbing the routing of mastered ones. We conduct extensive experiments on various robotics manipulation tasks in the Meta-World benchmark, where D2R achieves state-of-the-art performance with significantly improved learning efficiency.

With the exponential surge in diverse multi-modal data, traditional uni-modal retrieval methods struggle to meet the needs of users demanding access to data from various modalities. To address this, cross-modal retrieval has emerged, enabling interaction across modalities, facilitating semantic matching, and leveraging complementarity and consistency between different modal data. Although prior literature undertook a review of the cross-modal retrieval field, it exhibits numerous deficiencies pertaining to timeliness, taxonomy, and comprehensiveness. This paper conducts a comprehensive review of cross-modal retrieval's evolution, spanning from shallow statistical analysis techniques to vision-language pre-training models. Commencing with a comprehensive taxonomy grounded in machine learning paradigms, mechanisms, and models, the paper then delves deeply into the principles and architectures underpinning existing cross-modal retrieval methods. Furthermore, it offers an overview of widely used benchmarks, metrics, and performances. Lastly, the paper probes the prospects and challenges that confront contemporary cross-modal retrieval, while engaging in a discourse on potential directions for further progress in the field. To facilitate the research on cross-modal retrieval, we develop an open-source code repository at //github.com/BMC-SDNU/Cross-Modal-Retrieval.

In pace with developments in the research field of artificial intelligence, knowledge graphs (KGs) have attracted a surge of interest from both academia and industry. As a representation of semantic relations between entities, KGs have proven to be particularly relevant for natural language processing (NLP), experiencing a rapid spread and wide adoption within recent years. Given the increasing amount of research work in this area, several KG-related approaches have been surveyed in the NLP research community. However, a comprehensive study that categorizes established topics and reviews the maturity of individual research streams remains absent to this day. Contributing to closing this gap, we systematically analyzed 507 papers from the literature on KGs in NLP. Our survey encompasses a multifaceted review of tasks, research types, and contributions. As a result, we present a structured overview of the research landscape, provide a taxonomy of tasks, summarize our findings, and highlight directions for future work.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

北京阿比特科技有限公司