亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

As a new research area, quantum software testing lacks systematic testing benchmarks to assess testing techniques' effectiveness. Recently, some open-source benchmarks and mutation analysis tools have emerged. However, there is insufficient evidence on how various quantum circuit characteristics (e.g., circuit depth, number of quantum gates), algorithms (e.g., Quantum Approximate Optimization Algorithm), and mutation characteristics (e.g., mutation operators) affect the most mutant detection in quantum circuits. Studying such relations is important to systematically design faulty benchmarks with varied attributes (e.g., the difficulty in detecting a seeded fault) to facilitate assessing the cost-effectiveness of quantum software testing techniques efficiently. To this end, we present a large-scale empirical evaluation with more than 700K faulty benchmarks (quantum circuits) generated by mutating 382 real-world quantum circuits. Based on the results, we provide valuable insights for researchers to define systematic quantum mutation analysis techniques. We also provide a tool to recommend mutants to users based on chosen characteristics (e.g., a quantum algorithm type) and the required difficulty of killing mutants. Finally, we also provide faulty benchmarks that can already be used to assess the cost-effectiveness of quantum software testing techniques.

相關內容

For reinforcement learning on complex stochastic systems, it is desirable to effectively leverage the information from historical samples collected in previous iterations to accelerate policy optimization. Classical experience replay, while effective, treats all observations uniformly, neglecting their relative importance. To address this limitation, we introduce a novel Variance Reduction Experience Replay (VRER) framework, enabling the selective reuse of relevant samples to improve policy gradient estimation. VRER, as an adaptable method that can seamlessly integrate with different policy optimization algorithms, forms the foundation of our sample-efficient off-policy algorithm known as Policy Optimization with VRER (PG-VRER). Furthermore, the lack of a rigorous theoretical understanding of the experience replay method in the literature motivates us to introduce a novel theoretical framework that accounts for sample dependencies induced by Markovian noise and behavior policy interdependencies. This framework is then employed to analyze the finite-time convergence of our VRER-based policy optimization algorithm, revealing a crucial bias-variance trade-off in policy gradient estimates: the reuse of old experience introduces increased bias while simultaneously reducing gradient variance. Extensive experiments have shown that VRER offers a notable acceleration in learning optimal policies and enhances the performance of state-of-the-art (SOTA) policy optimization approaches.

Existing blind image quality assessment (BIQA) methods focus on designing complicated networks based on convolutional neural networks (CNNs) or transformer. In addition, some BIQA methods enhance the performance of the model in a two-stage training manner. Despite the significant advancements, these methods remarkably raise the parameter count of the model, thus requiring more training time and computational resources. To tackle the above issues, we propose a lightweight parallel framework (LPF) for BIQA. First, we extract the visual features using a pre-trained feature extraction network. Furthermore, we construct a simple yet effective feature embedding network (FEN) to transform the visual features, aiming to generate the latent representations that contain salient distortion information. To improve the robustness of the latent representations, we present two novel self-supervised subtasks, including a sample-level category prediction task and a batch-level quality comparison task. The sample-level category prediction task is presented to help the model with coarse-grained distortion perception. The batch-level quality comparison task is formulated to enhance the training data and thus improve the robustness of the latent representations. Finally, the latent representations are fed into a distortion-aware quality regression network (DaQRN), which simulates the human vision system (HVS) and thus generates accurate quality scores. Experimental results on multiple benchmark datasets demonstrate that the proposed method achieves superior performance over state-of-the-art approaches. Moreover, extensive analyses prove that the proposed method has lower computational complexity and faster convergence speed.

Distributionally robust optimization has emerged as an attractive way to train robust machine learning models, capturing data uncertainty and distribution shifts. Recent statistical analyses have proved that robust models built from Wasserstein ambiguity sets have nice generalization guarantees, breaking the curse of dimensionality. However, these results are obtained in specific cases, at the cost of approximations, or under assumptions difficult to verify in practice. In contrast, we establish, in this article, exact generalization guarantees that cover all practical cases, including any transport cost function and any loss function, potentially non-convex and nonsmooth. For instance, our result applies to deep learning, without requiring restrictive assumptions. We achieve this result through a novel proof technique that combines nonsmooth analysis rationale with classical concentration results. Our approach is general enough to extend to the recent versions of Wasserstein/Sinkhorn distributionally robust problems that involve (double) regularizations.

Transformer based code models have impressive performance in many software engineering tasks. However, their effectiveness degrades when symbols are missing or not informative. The reason is that the model may not learn to pay attention to the right correlations/contexts without the help of symbols. We propose a new method to pre-train general code models when symbols are lacking. We observe that in such cases, programs degenerate to something written in a very primitive language. We hence propose to use program analysis to extract contexts a priori (instead of relying on symbols and masked language modeling as in vanilla models). We then leverage a novel attention masking method to only allow the model attending to these contexts, e.g., bi-directional program dependence transitive closures and token co-occurrences. In the meantime, the inherent self-attention mechanism is utilized to learn which of the allowed attentions are more important compared to others. To realize the idea, we enhance the vanilla tokenization and model architecture of a BERT model, construct and utilize attention masks, and introduce a new pre-training algorithm. We pre-train this BERT-like model from scratch, using a dataset of 26 million stripped binary functions with explicit program dependence information extracted by our tool. We apply the model in three downstream tasks: binary similarity, type inference, and malware family classification. Our pre-trained model can improve the SOTAs in these tasks from 53% to 64%, 49% to 60%, and 74% to 94%, respectively. It also substantially outperforms other general pre-training techniques of code understanding models.

Large language models (LLMs) have demonstrated notable proficiency in code generation, with numerous prior studies showing their promising capabilities in various development scenarios. However, these studies mainly provide evaluations in research settings, which leaves a significant gap in understanding how effectively LLMs can support developers in real-world. To address this, we conducted an empirical analysis of conversations in DevGPT, a dataset collected from developers' conversations with ChatGPT (captured with the Share Link feature on platforms such as GitHub). Our empirical findings indicate that the current practice of using LLM-generated code is typically limited to either demonstrating high-level concepts or providing examples in documentation, rather than to be used as production-ready code. These findings indicate that there is much future work needed to improve LLMs in code generation before they can be integral parts of modern software development.

Important problems in causal inference, economics, and, more generally, robust machine learning can be expressed as conditional moment restrictions, but estimation becomes challenging as it requires solving a continuum of unconditional moment restrictions. Previous works addressed this problem by extending the generalized method of moments (GMM) to continuum moment restrictions. In contrast, generalized empirical likelihood (GEL) provides a more general framework and has been shown to enjoy favorable small-sample properties compared to GMM-based estimators. To benefit from recent developments in machine learning, we provide a functional reformulation of GEL in which arbitrary models can be leveraged. Motivated by a dual formulation of the resulting infinite dimensional optimization problem, we devise a practical method and explore its asymptotic properties. Finally, we provide kernel- and neural network-based implementations of the estimator, which achieve state-of-the-art empirical performance on two conditional moment restriction problems.

The domain of machine learning is confronted with a crucial research area known as class imbalance learning, which presents considerable hurdles in precise classification of minority classes. This issue can result in biased models where the majority class takes precedence in the training process, leading to the underrepresentation of the minority class. The random vector functional link (RVFL) network is a widely used and effective learning model for classification due to its good generalization performance and efficiency. However, it suffers when dealing with imbalanced datasets. To overcome this limitation, we propose a novel graph embedded intuitionistic fuzzy RVFL for class imbalance learning (GE-IFRVFL-CIL) model incorporating a weighting mechanism to handle imbalanced datasets. The proposed GE-IFRVFL-CIL model offers plethora of benefits: $(i)$ leveraging graph embedding to preserve the inherent topological structure of the datasets, $(ii)$ employing intuitionistic fuzzy theory to handle uncertainty and imprecision in the data, $(iii)$ and the most important, it tackles class imbalance learning. The amalgamation of a weighting scheme, graph embedding, and intuitionistic fuzzy sets leads to the superior performance of the proposed models on KEEL benchmark imbalanced datasets with and without Gaussian noise. Furthermore, we implemented the proposed GE-IFRVFL-CIL on the ADNI dataset and achieved promising results, demonstrating the model's effectiveness in real-world applications. The proposed GE-IFRVFL-CIL model offers a promising solution to address the class imbalance issue, mitigates the detrimental effect of noise and outliers, and preserves the inherent geometrical structures of the dataset.

Current language model-driven agents often lack mechanisms for effective user participation, which is crucial given the vagueness commonly found in user instructions. Although adept at devising strategies and performing tasks, these agents struggle with seeking clarification and grasping precise user intentions. To bridge this gap, we introduce Intention-in-Interaction (IN3), a novel benchmark designed to inspect users' implicit intentions through explicit queries. Next, we propose the incorporation of model experts as the upstream in agent designs to enhance user-agent interaction. Employing IN3, we empirically train Mistral-Interact, a powerful model that proactively assesses task vagueness, inquires user intentions, and refines them into actionable goals before starting downstream agent task execution. Integrating it into the XAgent framework, we comprehensively evaluate the enhanced agent system regarding user instruction understanding and execution, revealing that our approach notably excels at identifying vague user tasks, recovering and summarizing critical missing information, setting precise and necessary agent execution goals, and minimizing redundant tool usage, thus boosting overall efficiency. All the data and codes are released.

Convolutional neural networks (CNNs) for image processing tend to focus on localized texture patterns, commonly referred to as texture bias. While most of the previous works in the literature focus on the task of image classification, we go beyond this and study the texture bias of CNNs in semantic segmentation. In this work, we propose to train CNNs on pre-processed images with less texture to reduce the texture bias. Therein, the challenge is to suppress image texture while preserving shape information. To this end, we utilize edge enhancing diffusion (EED), an anisotropic image diffusion method initially introduced for image compression, to create texture reduced duplicates of existing datasets. Extensive numerical studies are performed with both CNNs and vision transformer models trained on original data and EED-processed data from the Cityscapes dataset and the CARLA driving simulator. We observe strong texture-dependence of CNNs and moderate texture-dependence of transformers. Training CNNs on EED-processed images enables the models to become completely ignorant with respect to texture, demonstrating resilience with respect to texture re-introduction to any degree. Additionally we analyze the performance reduction in depth on a level of connected components in the semantic segmentation and study the influence of EED pre-processing on domain generalization as well as adversarial robustness.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

北京阿比特科技有限公司