As users shift from interacting actively with devices with screens to interacting seamlessly with smart environments, novel models of user authentication will be needed to maintain the security and privacy of user data. To understand users' attitudes toward new models of authentication (e.g., voice recognition), we surveyed 117 Amazon Turk workers and 43 computer science students about their authentication preferences, in contexts when others are present and different usability metrics. Our users placed less trust in natural authentication modalities (e.g., body gestures) than traditional modalities (e.g., passwords) due to concerns about accuracy or security. Users were also not as willing to use natural authentication modalities except in the presence of people they trust due to risk of exposure and feelings of awkwardness. We discuss the implications for designing natural multimodal authentication and explore the design space around users' current mental models for the future of secure and usable smart technology.
Multimodal medical data fusion has emerged as a transformative approach in smart healthcare, enabling a comprehensive understanding of patient health and personalized treatment plans. In this paper, a journey from data, information, and knowledge to wisdom (DIKW) is explored through multimodal fusion for smart healthcare. A comprehensive review of multimodal medical data fusion focuses on the integration of various data modalities are presented. It explores different approaches such as Feature selection, Rule-based systems, Machine learning, Deep learning, and Natural Language Processing for fusing and analyzing multimodal data. The paper also highlights the challenges associated with multimodal fusion in healthcare. By synthesizing the reviewed frameworks and insights, a generic framework for multimodal medical data fusion is proposed while aligning with the DIKW mechanism. Moreover, it discusses future directions aligned with the four pillars of healthcare: Predictive, Preventive, Personalized, and Participatory approaches based on the DIKW and the generic framework. The components from this comprehensive survey form the foundation for the successful implementation of multimodal fusion in smart healthcare. The findings of this survey can guide researchers and practitioners in leveraging the power of multimodal fusion with the approaches to revolutionize healthcare and improve patient outcomes.
Over the past few years, Federated Learning (FL) has become an emerging machine learning technique to tackle data privacy challenges through collaborative training. In the Federated Learning algorithm, the clients submit a locally trained model, and the server aggregates these parameters until convergence. Despite significant efforts that have been made to FL in fields like computer vision, audio, and natural language processing, the FL applications utilizing multimodal data streams remain largely unexplored. It is known that multimodal learning has broad real-world applications in emotion recognition, healthcare, multimedia, and social media, while user privacy persists as a critical concern. Specifically, there are no existing FL benchmarks targeting multimodal applications or related tasks. In order to facilitate the research in multimodal FL, we introduce FedMultimodal, the first FL benchmark for multimodal learning covering five representative multimodal applications from ten commonly used datasets with a total of eight unique modalities. FedMultimodal offers a systematic FL pipeline, enabling end-to-end modeling framework ranging from data partition and feature extraction to FL benchmark algorithms and model evaluation. Unlike existing FL benchmarks, FedMultimodal provides a standardized approach to assess the robustness of FL against three common data corruptions in real-life multimodal applications: missing modalities, missing labels, and erroneous labels. We hope that FedMultimodal can accelerate numerous future research directions, including designing multimodal FL algorithms toward extreme data heterogeneity, robustness multimodal FL, and efficient multimodal FL. The datasets and benchmark results can be accessed at: //github.com/usc-sail/fed-multimodal.
The robustness of multimodal deep learning models to realistic changes in the input text is critical for their applicability to important tasks such as text-to-image retrieval and cross-modal entailment. To measure robustness, several existing approaches edit the text data, but do so without leveraging the cross-modal information present in multimodal data. Information from the visual modality, such as color, size, and shape, provide additional attributes that users can include in their inputs. Thus, we propose cross-modal attribute insertions as a realistic perturbation strategy for vision-and-language data that inserts visual attributes of the objects in the image into the corresponding text (e.g., "girl on a chair" to "little girl on a wooden chair"). Our proposed approach for cross-modal attribute insertions is modular, controllable, and task-agnostic. We find that augmenting input text using cross-modal insertions causes state-of-the-art approaches for text-to-image retrieval and cross-modal entailment to perform poorly, resulting in relative drops of 15% in MRR and 20% in $F_1$ score, respectively. Crowd-sourced annotations demonstrate that cross-modal insertions lead to higher quality augmentations for multimodal data than augmentations using text-only data, and are equivalent in quality to original examples. We release the code to encourage robustness evaluations of deep vision-and-language models: //github.com/claws-lab/multimodal-robustness-xmai.
Gender bias in artificial intelligence (AI) has emerged as a pressing concern with profound implications for individuals' lives. This paper presents a comprehensive survey that explores gender bias in Transformer models from a linguistic perspective. While the existence of gender bias in language models has been acknowledged in previous studies, there remains a lack of consensus on how to effectively measure and evaluate this bias. Our survey critically examines the existing literature on gender bias in Transformers, shedding light on the diverse methodologies and metrics employed to assess bias. Several limitations in current approaches to measuring gender bias in Transformers are identified, encompassing the utilization of incomplete or flawed metrics, inadequate dataset sizes, and a dearth of standardization in evaluation methods. Furthermore, our survey delves into the potential ramifications of gender bias in Transformers for downstream applications, including dialogue systems and machine translation. We underscore the importance of fostering equity and fairness in these systems by emphasizing the need for heightened awareness and accountability in developing and deploying language technologies. This paper serves as a comprehensive overview of gender bias in Transformer models, providing novel insights and offering valuable directions for future research in this critical domain.
Technical debt is a well-known challenge in software development, and its negative impact on software quality, maintainability, and performance is widely recognized. In recent years, artificial intelligence (AI) has proven to be a promising approach to assist in managing technical debt. This paper presents a comprehensive literature review of existing research on the use of AI powered tools for technical debt avoidance in software development. In this literature review we analyzed 15 related research papers which covers various AI-powered techniques, such as code analysis and review, automated testing, code refactoring, predictive maintenance, code generation, and code documentation, and explores their effectiveness in addressing technical debt. The review also discusses the benefits and challenges of using AI for technical debt management, provides insights into the current state of research, and highlights gaps and opportunities for future research. The findings of this review suggest that AI has the potential to significantly improve technical debt management in software development, and that existing research provides valuable insights into how AI can be leveraged to address technical debt effectively and efficiently. However, the review also highlights several challenges and limitations of current approaches, such as the need for high-quality data and ethical considerations and underscores the importance of further research to address these issues. The paper provides a comprehensive overview of the current state of research on AI for technical debt avoidance and offers practical guidance for software development teams seeking to leverage AI in their development processes to mitigate technical debt effectively
Multi-Factor Authentication is intended to strengthen the security of password-based authentication by adding another factor, such as hardware tokens or one-time passwords using mobile apps. However, this increased authentication security comes with potential drawbacks that can lead to account and asset loss. If users lose access to their additional authentication factors for any reason, they will be locked out of their accounts. Consequently, services that provide Multi-Factor Authentication should deploy procedures to allow their users to recover from losing access to their additional factor that are both secure and easy-to-use. To the best of our knowledge, we are the first to first-hand investigate the security and user experience of deployed Multi-Factor Authentication recovery procedures. We first evaluate the official help and support pages of 1,303 websites that provide Multi-Factor Authentication and collect documented information about their recovery procedures. Second, we select a subset of 71 websites, create accounts, set up Multi-Factor Authentication, and perform an in-depth investigation of their recovery procedure security and user experience. We find that many websites deploy insecure Multi-Factor Authentication recovery procedures and allowed us to circumvent and disable Multi-Factor Authentication when having access to the accounts' associated email addresses. Furthermore, we commonly observed discrepancies between our in-depth analysis and the official help and support pages, implying that information meant to aid users is often either incorrect or outdated.
As a unifying concept in economics, game theory, and operations research, even in the Robotics and AI field, the utility is used to evaluate the level of individual needs, preferences, and interests. Especially for decision-making and learning in multi-agent/robot systems (MAS/MRS), a suitable utility model can guide agents in choosing reasonable strategies to achieve their current needs and learning to cooperate and organize their behaviors, optimizing the system's utility, building stable and reliable relationships, and guaranteeing each group member's sustainable development, similar to the human society. Although these systems' complex, large-scale, and long-term behaviors are strongly determined by the fundamental characteristics of the underlying relationships, there has been less discussion on the theoretical aspects of mechanisms and the fields of applications in Robotics and AI. This paper introduces a utility-orient needs paradigm to describe and evaluate inter and outer relationships among agents' interactions. Then, we survey existing literature in relevant fields to support it and propose several promising research directions along with some open problems deemed necessary for further investigations.
This paper presents a comprehensive and practical guide for practitioners and end-users working with Large Language Models (LLMs) in their downstream natural language processing (NLP) tasks. We provide discussions and insights into the usage of LLMs from the perspectives of models, data, and downstream tasks. Firstly, we offer an introduction and brief summary of current GPT- and BERT-style LLMs. Then, we discuss the influence of pre-training data, training data, and test data. Most importantly, we provide a detailed discussion about the use and non-use cases of large language models for various natural language processing tasks, such as knowledge-intensive tasks, traditional natural language understanding tasks, natural language generation tasks, emergent abilities, and considerations for specific tasks.We present various use cases and non-use cases to illustrate the practical applications and limitations of LLMs in real-world scenarios. We also try to understand the importance of data and the specific challenges associated with each NLP task. Furthermore, we explore the impact of spurious biases on LLMs and delve into other essential considerations, such as efficiency, cost, and latency, to ensure a comprehensive understanding of deploying LLMs in practice. This comprehensive guide aims to provide researchers and practitioners with valuable insights and best practices for working with LLMs, thereby enabling the successful implementation of these models in a wide range of NLP tasks. A curated list of practical guide resources of LLMs, regularly updated, can be found at \url{//github.com/Mooler0410/LLMsPracticalGuide}.
Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy. Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models. However, both big deep neural and language models are trained with huge amounts of data which often lies on the server side. Since text data is widely originated from end users, in this work, we look into recent NLP models and techniques which use federated learning as the learning framework. Our survey discusses major challenges in federated natural language processing, including the algorithm challenges, system challenges as well as the privacy issues. We also provide a critical review of the existing Federated NLP evaluation methods and tools. Finally, we highlight the current research gaps and future directions.
Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.