亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Machine-learned language models have transformed everyday life: they steer us when we study, drive, manage money. They have the potential to transform our civilization. But they hallucinate. Their realities are virtual. This note provides a high-level overview of language models and outlines a low-level model of learning machines. It turns out that, after they become capable of recognizing hallucinations and dreaming safely, as humans tend to be, the language-learning machines proceed to generate broader systems of false beliefs and self-confirming theories, as humans tend to do.

相關內容

One persistent obstacle in industrial quality inspection is the detection of anomalies. In real-world use cases, two problems must be addressed: anomalous data is sparse and the same types of anomalies need to be detected on previously unseen objects. Current anomaly detection approaches can be trained with sparse nominal data, whereas domain generalization approaches enable detecting objects in previously unseen domains. Utilizing those two observations, we introduce the hybrid task of domain generalization on sparse classes. To introduce an accompanying dataset for this task, we present a modification of the well-established MVTec AD dataset by generating three new datasets. In addition to applying existing methods for benchmark, we design two embedding-based approaches, Spatial Embedding MLP (SEMLP) and Labeled PatchCore. Overall, SEMLP achieves the best performance with an average image-level AUROC of 87.2 % vs. 80.4 % by MIRO. The new and openly available datasets allow for further research to improve industrial anomaly detection.

Visualizing data and finding patterns in data are ubiquitous problems in the sciences. Increasingly, applications seek signal and structure in a contrastive setting: a foreground dataset relative to a background dataset. For this purpose, we propose contrastive independent component analysis (cICA). This generalizes independent component analysis to independent latent variables across a foreground and background. We propose a hierarchical tensor decomposition algorithm for cICA. We study the identifiability of cICA and demonstrate its performance visualizing data and finding patterns in data, using synthetic and real-world datasets, comparing the approach to existing contrastive methods.

Background: Incidence of adverse outcome events rises as patients with advanced illness approach end-of-life. Exposures that tend to occur near end-of-life, e.g., use of wheelchair, oxygen therapy and palliative care, may therefore be found associated with the incidence of the adverse outcomes. We propose a strategy for time-to-event analysis to mitigate the time-varying confounding. Methods: We propose a concept of reverse time-to-death (rTTD) and its use for the time-scale in time-to-event analysis. We used data on community-based palliative care uptake (exposure) and emergency department visits (outcome) among patients with advanced cancer in Singapore to illustrate. We compare the results against that of the common practice of using time-on-study (TOS) as time-scale. Results: Graphical analysis demonstrated that cancer patients receiving palliative care had higher rate of emergency department visits than non-recipients mainly because they were closer to end-of-life, and that rTTD analysis made comparison between patients at the same time-to-death. Analysis of emergency department visits in relation to palliative care using TOS time-scale showed significant increase in hazard ratio estimate when observed time-varying covariates were omitted from statistical adjustment (change-in-estimate=0.38; 95% CI 0.15 to 0.60). There was no such change in otherwise the same analysis using rTTD (change-in-estimate=0.04; 95% CI -0.02 to 0.11), demonstrating the ability of rTTD time-scale to mitigate confounding that intensifies in relation to time-to-death. Conclusion: Use of rTTD as time-scale in time-to-event analysis provides a simple and robust approach to control time-varying confounding in studies of advanced illness, even if the confounders are unmeasured.

Generalized linear models (GLMs) arguably represent the standard approach for statistical regression beyond the Gaussian likelihood scenario. When Bayesian formulations are employed, the general absence of a tractable posterior distribution has motivated the development of deterministic approximations, which are generally more scalable than sampling techniques. Among them, expectation propagation (EP) showed extreme accuracy, usually higher than many variational Bayes solutions. However, the higher computational cost of EP posed concerns about its practical feasibility, especially in high-dimensional settings. We address these concerns by deriving a novel efficient formulation of EP for GLMs, whose cost scales linearly in the number of covariates p. This reduces the state-of-the-art O(p^2 n) per-iteration computational cost of the EP routine for GLMs to O(p n min{p,n}), with n being the sample size. We also show that, for binary models and log-linear GLMs approximate predictive means can be obtained at no additional cost. To preserve efficient moment matching for count data, we propose employing a combination of log-normal Laplace transform approximations, avoiding numerical integration. These novel results open the possibility of employing EP in settings that were believed to be practically impossible. Improvements over state-of-the-art approaches are illustrated both for simulated and real data. The efficient EP implementation is available at //github.com/niccoloanceschi/EPglm.

Our goal is to highlight some of the deep links between numerical splitting methods and control theory. We consider evolution equations of the form $\dot{x} = f_0(x) + f_1(x)$, where $f_0$ encodes a non-reversible dynamic, so that one is interested in schemes only involving forward flows of $f_0$. In this context, a splitting method can be interpreted as a trajectory of the control-affine system $\dot{x}(t)=f_0(x(t))+u(t)f_1(x(t))$, associated with a control~$u$ which is a finite sum of Dirac masses. The general goal is then to find a control such that the flow of $f_0 + u(t) f_1$ is as close as possible to the flow of $f_0+f_1$. Using this interpretation and classical tools from control theory, we revisit well-known results concerning numerical splitting methods, and we prove a handful of new ones, with an emphasis on splittings with additional positivity conditions on the coefficients. First, we show that there exist numerical schemes of any arbitrary order involving only forward flows of $f_0$ if one allows complex coefficients for the flows of $f_1$. Equivalently, for complex-valued controls, we prove that the Lie algebra rank condition is equivalent to the small-time local controllability of a system. Second, for real-valued coefficients, we show that the well-known order restrictions are linked with so-called "bad" Lie brackets from control theory, which are known to yield obstructions to small-time local controllability. We use our recent basis of the free Lie algebra to precisely identify the conditions under which high-order methods exist.

One way to personalize and steer generations from large language models (LLM) is to assign a persona: a role that describes how the user expects the LLM to behave (e.g., a helpful assistant, a teacher, a woman). This paper investigates how personas affect diverse aspects of model behavior. We assign to seven LLMs 162 personas from 12 categories spanning variables like gender, sexual orientation, and occupation. We prompt them to answer questions from five datasets covering objective (e.g., questions about math and history) and subjective tasks (e.g., questions about beliefs and values). We also compare persona's generations to two baseline settings: a control persona setting with 30 paraphrases of "a helpful assistant" to control for models' prompt sensitivity, and an empty persona setting where no persona is assigned. We find that for all models and datasets, personas show greater variability than the control setting and that some measures of persona behavior generalize across models.

Machine learning (ML) methods, which fit to data the parameters of a given parameterized model class, have garnered significant interest as potential methods for learning surrogate models for complex engineering systems for which traditional simulation is expensive. However, in many scientific and engineering settings, generating high-fidelity data on which to train ML models is expensive, and the available budget for generating training data is limited, so that high-fidelity training data are scarce. ML models trained on scarce data have high variance, resulting in poor expected generalization performance. We propose a new multifidelity training approach for scientific machine learning via linear regression that exploits the scientific context where data of varying fidelities and costs are available: for example, high-fidelity data may be generated by an expensive fully resolved physics simulation whereas lower-fidelity data may arise from a cheaper model based on simplifying assumptions. We use the multifidelity data within an approximate control variate framework to define new multifidelity Monte Carlo estimators for linear regression models. We provide bias and variance analysis of our new estimators that guarantee the approach's accuracy and improved robustness to scarce high-fidelity data. Numerical results demonstrate that our multifidelity training approach achieves similar accuracy to the standard high-fidelity only approach with orders-of-magnitude reduced high-fidelity data requirements.

Turnover consists of moving into and out of professional employees in the company in a given period. Such a phenomenon significantly impacts the software industry since it generates knowledge loss, delays in the schedule, and increased costs in the final project. Despite the efforts made by researchers and professionals to minimize the turnover, more studies are needed to understand the motivation that drives Software Engineers to leave their jobs and the main strategies CEOs adopt to retain these professionals in software development companies. In this paper, we contribute a mixed methods study involving semi-structured interviews with Software Engineers and CEOs to obtain a wider opinion of these professionals about turnover and a subsequent validation survey with additional software engineers to check and review the insights from interviews. In studying such aspects, we identified 19 different reasons for software engineers' turnover and 18 more efficient strategies used in the software development industry to reduce it. Our findings provide several implications for industry and academia, which can drive future research.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

北京阿比特科技有限公司