This paper describes experiments showing that some problems in natural language processing can already be addressed using quantum computers. The examples presented here include topic classification using both a quantum support vector machine and a bag-of-words approach, bigram modeling that can be applied to sequences of words and formal concepts, and ambiguity resolution in verb-noun composition. While the datasets used are still small, the systems described have been run on physical quantum computers. These implementations and their results are described along with the algorithms and mathematical approaches used.
We introduce Qunity, a new quantum programming language designed to treat quantum computing as a natural generalization of classical computing. Qunity presents a unified syntax where familiar programming constructs can have both quantum and classical effects. For example, one can use sum types to implement the direct sum of linear operators, exception handling syntax to implement projective measurements, and aliasing to induce entanglement. Further, Qunity takes advantage of the overlooked BQP subroutine theorem, allowing one to construct reversible subroutines from irreversible quantum algorithms through the uncomputation of "garbage" outputs. Unlike existing languages that enable quantum aspects with separate add-ons (like a classical language with quantum gates bolted on), Qunity provides a unified syntax along with a novel denotational semantics that guarantees that programs are quantum mechanically valid. We present Qunity's syntax, type system, and denotational semantics, showing how it can cleanly express several quantum algorithms. We also detail how Qunity can be compiled to a low-level qubit circuit language like OpenQASM, proving the realizability of our design.
The rapid changes in the finance industry due to the increasing amount of data have revolutionized the techniques on data processing and data analysis and brought new theoretical and computational challenges. In contrast to classical stochastic control theory and other analytical approaches for solving financial decision-making problems that heavily reply on model assumptions, new developments from reinforcement learning (RL) are able to make full use of the large amount of financial data with fewer model assumptions and to improve decisions in complex financial environments. This survey paper aims to review the recent developments and use of RL approaches in finance. We give an introduction to Markov decision processes, which is the setting for many of the commonly used RL approaches. Various algorithms are then introduced with a focus on value and policy based methods that do not require any model assumptions. Connections are made with neural networks to extend the framework to encompass deep RL algorithms. Our survey concludes by discussing the application of these RL algorithms in a variety of decision-making problems in finance, including optimal execution, portfolio optimization, option pricing and hedging, market making, smart order routing, and robo-advising.
Large, pre-trained transformer-based language models such as BERT have drastically changed the Natural Language Processing (NLP) field. We present a survey of recent work that uses these large language models to solve NLP tasks via pre-training then fine-tuning, prompting, or text generation approaches. We also present approaches that use pre-trained language models to generate data for training augmentation or other purposes. We conclude with discussions on limitations and suggested directions for future research.
Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.
Federated Learning aims to learn machine learning models from multiple decentralized edge devices (e.g. mobiles) or servers without sacrificing local data privacy. Recent Natural Language Processing techniques rely on deep learning and large pre-trained language models. However, both big deep neural and language models are trained with huge amounts of data which often lies on the server side. Since text data is widely originated from end users, in this work, we look into recent NLP models and techniques which use federated learning as the learning framework. Our survey discusses major challenges in federated natural language processing, including the algorithm challenges, system challenges as well as the privacy issues. We also provide a critical review of the existing Federated NLP evaluation methods and tools. Finally, we highlight the current research gaps and future directions.
Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.
Recently, the emergence of pre-trained models (PTMs) has brought natural language processing (NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy with four perspectives. Next, we describe how to adapt the knowledge of PTMs to the downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.
Over the last several years, the field of natural language processing has been propelled forward by an explosion in the use of deep learning models. This survey provides a brief introduction to the field and a quick overview of deep learning architectures and methods. It then sifts through the plethora of recent studies and summarizes a large assortment of relevant contributions. Analyzed research areas include several core linguistic processing issues in addition to a number of applications of computational linguistics. A discussion of the current state of the art is then provided along with recommendations for future research in the field.
Dialogue systems have attracted more and more attention. Recent advances on dialogue systems are overwhelmingly contributed by deep learning techniques, which have been employed to enhance a wide range of big data applications such as computer vision, natural language processing, and recommender systems. For dialogue systems, deep learning can leverage a massive amount of data to learn meaningful feature representations and response generation strategies, while requiring a minimum amount of hand-crafting. In this article, we give an overview to these recent advances on dialogue systems from various perspectives and discuss some possible research directions. In particular, we generally divide existing dialogue systems into task-oriented and non-task-oriented models, then detail how deep learning techniques help them with representative algorithms and finally discuss some appealing research directions that can bring the dialogue system research into a new frontier.