This paper introduces a reinforcement learning (RL) approach to address the challenges associated with configuring and optimizing genetic algorithms (GAs) for solving difficult combinatorial or non-linear problems. The proposed RL+GA method was specifically tested on the flow shop scheduling problem (FSP). The hybrid algorithm incorporates neural networks (NN) and uses the off-policy method Q-learning or the on-policy method Sarsa(0) to control two key genetic algorithm (GA) operators: parent selection mechanism and mutation. At each generation, the RL agent's action is determining the selection method, the probability of the parent selection and the probability of the offspring mutation. This allows the RL agent to dynamically adjust the selection and mutation based on its learned policy. The results of the study highlight the effectiveness of the RL+GA approach in improving the performance of the primitive GA. They also demonstrate its ability to learn and adapt from population diversity and solution improvements over time. This adaptability leads to improved scheduling solutions compared to static parameter configurations while maintaining population diversity throughout the evolutionary process.
This paper presents a series of new results for domain adaptation in the multi-view learning setting. The incorporation of multiple views in the domain adaptation was paid little attention in the previous studies. In this way, we propose an analysis of generalization bounds with Pac-Bayesian theory to consolidate the two paradigms, which are currently treated separately. Firstly, building on previous work by Germain et al., we adapt the distance between distribution proposed by Germain et al. for domain adaptation with the concept of multi-view learning. Thus, we introduce a novel distance that is tailored for the multi-view domain adaptation setting. Then, we give Pac-Bayesian bounds for estimating the introduced divergence. Finally, we compare the different new bounds with the previous studies.
Extensive utilization of deep reinforcement learning (DRL) policy networks in diverse continuous control tasks has raised questions regarding performance degradation in expansive state spaces where the input state norm is larger than that in the training environment. This paper aims to uncover the underlying factors contributing to such performance deterioration when dealing with expanded state spaces, using a novel analysis technique known as state division. In contrast to prior approaches that employ state division merely as a post-hoc explanatory tool, our methodology delves into the intrinsic characteristics of DRL policy networks. Specifically, we demonstrate that the expansion of state space induces the activation function $\tanh$ to exhibit saturability, resulting in the transformation of the state division boundary from nonlinear to linear. Our analysis centers on the paradigm of the double-integrator system, revealing that this gradual shift towards linearity imparts a control behavior reminiscent of bang-bang control. However, the inherent linearity of the division boundary prevents the attainment of an ideal bang-bang control, thereby introducing unavoidable overshooting. Our experimental investigations, employing diverse RL algorithms, establish that this performance phenomenon stems from inherent attributes of the DRL policy network, remaining consistent across various optimization algorithms.
Learning representations of molecular structures using deep learning is a fundamental problem in molecular property prediction tasks. Molecules inherently exist in the real world as three-dimensional structures; furthermore, they are not static but in continuous motion in the 3D Euclidean space, forming a potential energy surface. Therefore, it is desirable to generate multiple conformations in advance and extract molecular representations using a 4D-QSAR model that incorporates multiple conformations. However, this approach is impractical for drug and material discovery tasks because of the computational cost of obtaining multiple conformations. To address this issue, we propose a pre-training method for molecular GNNs using an existing dataset of molecular conformations to generate a latent vector universal to multiple conformations from a 2D molecular graph. Our method, called Boltzmann GNN, is formulated by maximizing the conditional marginal likelihood of a conditional generative model for conformations generation. We show that our model has a better prediction performance for molecular properties than existing pre-training methods using molecular graphs and three-dimensional molecular structures.
Selecting proper clients to participate in the iterative federated learning (FL) rounds is critical to effectively harness a broad range of distributed datasets. Existing client selection methods simply consider the variability among FL clients with uni-modal data, however, have yet to consider clients with multi-modalities. We reveal that traditional client selection scheme in MFL may suffer from a severe modality-level bias, which impedes the collaborative exploitation of multi-modal data, leading to insufficient local data exploration and global aggregation. To tackle this challenge, we propose a Client-wise Modality Selection scheme for MFL (CMSFed) that can comprehensively utilize information from each modality via avoiding such client selection bias caused by modality imbalance. Specifically, in each MFL round, the local data from different modalities are selectively employed to participate in local training and aggregation to mitigate potential modality imbalance of the global model. To approximate the fully aggregated model update in a balanced way, we introduce a novel local training loss function to enhance the weak modality and align the divergent feature spaces caused by inconsistent modality adoption strategies for different clients simultaneously. Then, a modality-level gradient decoupling method is designed to derive respective submodular functions to maintain the gradient diversity during the selection progress and balance MFL according to local modality imbalance in each iteration. Our extensive experiments showcase the superiority of CMSFed over baselines and its effectiveness in multi-modal data exploitation.
Part 1 of this paper provides a comprehensive guide to generating unconstrained, simplicial, four-dimensional (4D), hypervolume meshes. While a general procedure for constructing unconstrained n-dimensional Delaunay meshes is well-known, many of the explicit implementation details are missing from the relevant literature for cases in which n >= 4. This issue is especially critical for the case in which n = 4, as the resulting meshes have important space-time applications. As a result, the purpose of this paper is to provide explicit descriptions of the key components in a 4D mesh-generation algorithm: namely, the point-insertion process, geometric predicates, element quality metrics, and bistellar flips. This paper represents a natural continuation of the work which was pioneered by Anderson et al. in "Surface and hypersurface meshing techniques for space-time finite element methods", Computer-Aided Design, 2023. In this previous paper, hypersurface meshes were generated using a novel, trajectory-tracking procedure. In the current paper, we are interested in generating coarse, 4D hypervolume meshes (boundary meshes) which are formed by sequentially inserting points from an existing hypersurface mesh. In the latter portion of this paper, we present numerical experiments which demonstrate the viability of this approach for a simple, convex domain. Although, our main focus is on the generation of hypervolume boundary meshes, the techniques described in this paper are broadly applicable to a much wider range of 4D meshing methods. We note that the more complex topics of constrained hypervolume meshing, and boundary recovery for non-convex domains will be covered in Part 2 of the paper.
This paper surveys vision-language pre-training (VLP) methods for multimodal intelligence that have been developed in the last few years. We group these approaches into three categories: ($i$) VLP for image-text tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding; ($ii$) VLP for core computer vision tasks, such as (open-set) image classification, object detection, and segmentation; and ($iii$) VLP for video-text tasks, such as video captioning, video-text retrieval, and video question answering. For each category, we present a comprehensive review of state-of-the-art methods, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies. In addition, for each category, we discuss advanced topics being actively explored in the research community, such as big foundation models, unified modeling, in-context few-shot learning, knowledge, robustness, and computer vision in the wild, to name a few.
Deep neural network based recommendation systems have achieved great success as information filtering techniques in recent years. However, since model training from scratch requires sufficient data, deep learning-based recommendation methods still face the bottlenecks of insufficient data and computational inefficiency. Meta-learning, as an emerging paradigm that learns to improve the learning efficiency and generalization ability of algorithms, has shown its strength in tackling the data sparsity issue. Recently, a growing number of studies on deep meta-learning based recommenddation systems have emerged for improving the performance under recommendation scenarios where available data is limited, e.g. user cold-start and item cold-start. Therefore, this survey provides a timely and comprehensive overview of current deep meta-learning based recommendation methods. Specifically, we propose a taxonomy to discuss existing methods according to recommendation scenarios, meta-learning techniques, and meta-knowledge representations, which could provide the design space for meta-learning based recommendation methods. For each recommendation scenario, we further discuss technical details about how existing methods apply meta-learning to improve the generalization ability of recommendation models. Finally, we also point out several limitations in current research and highlight some promising directions for future research in this area.
Pre-trained models learn contextualized word representations on large-scale text corpus through a self-supervised learning method, which has achieved promising performance after fine-tuning. These models, however, suffer from poor robustness and lack of interpretability. Pre-trained models with knowledge injection, which we call knowledge enhanced pre-trained models (KEPTMs), possess deep understanding and logical reasoning and introduce interpretability to some extent. In this survey, we provide a comprehensive overview of KEPTMs for natural language processing. We first introduce the progress of pre-trained models and knowledge representation learning. Then we systematically categorize existing KEPTMs from three different perspectives. Finally, we outline some potential directions of KEPTMs for future research.
Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.
Machine Learning has been the quintessential solution for many AI problems, but learning is still heavily dependent on the specific training data. Some learning models can be incorporated with a prior knowledge in the Bayesian set up, but these learning models do not have the ability to access any organised world knowledge on demand. In this work, we propose to enhance learning models with world knowledge in the form of Knowledge Graph (KG) fact triples for Natural Language Processing (NLP) tasks. Our aim is to develop a deep learning model that can extract relevant prior support facts from knowledge graphs depending on the task using attention mechanism. We introduce a convolution-based model for learning representations of knowledge graph entity and relation clusters in order to reduce the attention space. We show that the proposed method is highly scalable to the amount of prior information that has to be processed and can be applied to any generic NLP task. Using this method we show significant improvement in performance for text classification with News20, DBPedia datasets and natural language inference with Stanford Natural Language Inference (SNLI) dataset. We also demonstrate that a deep learning model can be trained well with substantially less amount of labeled training data, when it has access to organised world knowledge in the form of knowledge graph.