亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Many applications utilize sensors in mobile devices and machine learning to provide novel services. However, various factors such as different users, devices, and environments impact the performance of such applications, thus making the domain shift (i.e., distributional shift between the training domain and the target domain) a critical issue in mobile sensing. Despite attempts in domain adaptation to solve this challenging problem, their performance is unreliable due to the complex interplay among diverse factors. In principle, the performance uncertainty can be identified and redeemed by performance validation with ground-truth labels. However, it is infeasible for every user to collect high-quality, sufficient labeled data. To address the issue, we present DAPPER (Domain AdaPtation Performance EstimatoR) that estimates the adaptation performance in a target domain with only unlabeled target data. Our key idea is to approximate the model performance based on the mutual information between the model inputs and corresponding outputs. Our evaluation with four real-world sensing datasets compared against six baselines shows that on average, DAPPER outperforms the state-of-the-art baseline by 39.8% in estimation accuracy. Moreover, our on-device experiment shows that DAPPER achieves up to 396X less computation overhead compared with the baselines.

相關內容

We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks. Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes. Rapid model advancements pose challenges to evaluation benchmark development. Problems include: (1) How to systematically structure and evaluate the complicated multimodal tasks; (2) How to design evaluation metrics that work well across question and answer types; and (3) How to give model insights beyond a simple performance ranking. To this end, we present MM-Vet, designed based on the insight that the intriguing ability to solve complicated tasks is often achieved by a generalist model being able to integrate different core vision-language (VL) capabilities. MM-Vet defines 6 core VL capabilities and examines the 16 integrations of interest derived from the capability combination. For evaluation metrics, we propose an LLM-based evaluator for open-ended outputs. The evaluator enables the evaluation across different question types and answer styles, resulting in a unified scoring metric. We evaluate representative LMMs on MM-Vet, providing insights into the capabilities of different LMM system paradigms and models. Code and data are available at //github.com/yuweihao/MM-Vet.

While software engineers are optimistically adopting crypto-API misuse detectors (or crypto-detectors) in their software development cycles, this momentum must be accompanied by a rigorous understanding of crypto-detectors' effectiveness at finding crypto-API misuses in practice. This demo paper presents the technical details and usage scenarios of our tool, namely Mutation Analysis for evaluating Static Crypto-API misuse detectors (MASC). We developed $12$ generalizable, usage based mutation operators and three mutation scopes, namely Main Scope, Similarity Scope, and Exhaustive Scope, which can be used to expressively instantiate compilable variants of the crypto-API misuse cases. Using MASC, we evaluated nine major crypto-detectors, and discovered $19$ unique, undocumented flaws. We designed MASC to be configurable and user-friendly; a user can configure the parameters to change the nature of generated mutations. Furthermore, MASC comes with both Command Line Interface and Web-based front-end, making it practical for users of different levels of expertise.

Social media platforms provide a rich environment for analyzing user behavior. Recently, deep learning-based methods have been a mainstream approach for social media analysis models involving complex patterns. However, these methods are susceptible to biases in the training data, such as participation inequality. Basically, a mere 1% of users generate the majority of the content on social networking sites, while the remaining users, though engaged to varying degrees, tend to be less active in content creation and largely silent. These silent users consume and listen to information that is propagated on the platform. However, their voice, attitude, and interests are not reflected in the online content, making the decision of the current methods predisposed towards the opinion of the active users. So models can mistake the loudest users for the majority. We propose to leverage re-weighting techniques to make the silent majority heard, and in turn, investigate whether the cues from these users can improve the performance of the current models for the downstream task of fake news detection.

Dynamic colored meshes (DCM) are widely used in various applications; however, these meshes may undergo different processes, such as compression or transmission, which can distort them and degrade their quality. To facilitate the development of objective metrics for DCMs and study the influence of typical distortions on their perception, we create the Tencent - dynamic colored mesh database (TDMD) containing eight reference DCM objects with six typical distortions. Using processed video sequences (PVS) derived from the DCM, we have conducted a large-scale subjective experiment that resulted in 303 distorted DCM samples with mean opinion scores, making the TDMD the largest available DCM database to our knowledge. This database enabled us to study the impact of different types of distortion on human perception and offer recommendations for DCM compression and related tasks. Additionally, we have evaluated three types of state-of-the-art objective metrics on the TDMD, including image-based, point-based, and video-based metrics, on the TDMD. Our experimental results highlight the strengths and weaknesses of each metric, and we provide suggestions about the selection of metrics in practical DCM applications. The TDMD will be made publicly available at the following location: //multimedia.tencent.com/resources/tdmd.

Without proper safeguards, large language models will readily follow malicious instructions and generate toxic content. This motivates safety efforts such as red-teaming and large-scale feedback learning, which aim to make models both helpful and harmless. However, there is a tension between these two objectives, since harmlessness requires models to refuse complying with unsafe prompts, and thus not be helpful. Recent anecdotal evidence suggests that some models may have struck a poor balance, so that even clearly safe prompts are refused if they use similar language to unsafe prompts or mention sensitive topics. In this paper, we introduce a new test suite called XSTest to identify such eXaggerated Safety behaviours in a structured and systematic way. In its current form, XSTest comprises 200 safe prompts across ten prompt types that well-calibrated models should not refuse to comply with. We describe XSTest's creation and composition, and use the test suite to highlight systematic failure modes in a recently-released state-of-the-art language model.

For text-to-video retrieval (T2VR), which aims to retrieve unlabeled videos by ad-hoc textual queries, CLIP-based methods are dominating. Compared to CLIP4Clip which is efficient and compact, the state-of-the-art models tend to compute video-text similarity by fine-grained cross-modal feature interaction and matching, putting their scalability for large-scale T2VR into doubt. For efficient T2VR, we propose TeachCLIP with multi-grained teaching to let a CLIP4Clip based student network learn from more advanced yet computationally heavy models such as X-CLIP, TS2-Net and X-Pool . To improve the student's learning capability, we add an Attentional frame-Feature Aggregation (AFA) block, which by design adds no extra storage/computation overhead at the retrieval stage. While attentive weights produced by AFA are commonly used for combining frame-level features, we propose a novel use of the weights to let them imitate frame-text relevance estimated by the teacher network. As such, AFA provides a fine-grained learning (teaching) channel for the student (teacher). Extensive experiments on multiple public datasets justify the viability of the proposed method.

Practical object detection application can lose its effectiveness on image inputs with natural distribution shifts. This problem leads the research community to pay more attention on the robustness of detectors under Out-Of-Distribution (OOD) inputs. Existing works construct datasets to benchmark the detector's OOD robustness for a specific application scenario, e.g., Autonomous Driving. However, these datasets lack universality and are hard to benchmark general detectors built on common tasks such as COCO. To give a more comprehensive robustness assessment, we introduce COCO-O(ut-of-distribution), a test dataset based on COCO with 6 types of natural distribution shifts. COCO-O has a large distribution gap with training data and results in a significant 55.7% relative performance drop on a Faster R-CNN detector. We leverage COCO-O to conduct experiments on more than 100 modern object detectors to investigate if their improvements are credible or just over-fitting to the COCO test set. Unfortunately, most classic detectors in early years do not exhibit strong OOD generalization. We further study the robustness effect on recent breakthroughs of detector's architecture design, augmentation and pre-training techniques. Some empirical findings are revealed: 1) Compared with detection head or neck, backbone is the most important part for robustness; 2) An end-to-end detection transformer design brings no enhancement, and may even reduce robustness; 3) Large-scale foundation models have made a great leap on robust object detection. We hope our COCO-O could provide a rich testbed for robustness study of object detection. The dataset will be available at //github.com/alibaba/easyrobust/tree/main/benchmarks/coco_o.

Data provenance, or data lineage, describes the life cycle of data. In scientific workflows on HPC systems, scientists often seek diverse provenance (e.g., origins of data products, usage patterns of datasets). Unfortunately, existing provenance solutions cannot address the challenges due to their incompatible provenance models and/or system implementations. In this paper, we analyze four representative scientific workflows in collaboration with the domain scientists to identify concrete provenance needs. Based on the first-hand analysis, we propose a provenance framework called PROV-IO+, which includes an I/O-centric provenance model for describing scientific data and the associated I/O operations and environments precisely. Moreover, we build a prototype of PROV-IO+ to enable end-to-end provenance support on real HPC systems with little manual effort. The PROV-IO+ framework can support both containerized and non-containerized workflows on different HPC platforms with flexibility in selecting various classes of provenance. Our experiments with realistic workflows show that PROV-IO+ can address the provenance needs of the domain scientists effectively with reasonable performance (e.g., less than 3.5% tracking overhead for most experiments). Moreover, PROV-IO+ outperforms a state-of-the-art system (i.e., ProvLake) in our experiments.

Dialogue act annotations are important to improve response generation quality in task-oriented dialogue systems. However, it can be challenging to use dialogue acts to control response generation in a generalizable way because different datasets and tasks may have incompatible annotations. While alternative methods that utilize latent action spaces or reinforcement learning do not require explicit annotations, they may lack interpretability or face difficulties defining task-specific rewards. In this work, we present a novel end-to-end latent dialogue act model (DiactTOD) that represents dialogue acts in a latent space. DiactTOD, when pre-trained on a large corpus, is able to predict and control dialogue acts to generate controllable responses using these latent representations in a zero-shot fashion. Our approach demonstrates state-of-the-art performance across a wide range of experimental settings on the MultiWOZ dataset, including zero-shot, few-shot, and full data fine-tuning with both end-to-end and policy optimization configurations.

As an effective strategy, data augmentation (DA) alleviates data scarcity scenarios where deep learning techniques may fail. It is widely applied in computer vision then introduced to natural language processing and achieves improvements in many tasks. One of the main focuses of the DA methods is to improve the diversity of training data, thereby helping the model to better generalize to unseen testing data. In this survey, we frame DA methods into three categories based on the diversity of augmented data, including paraphrasing, noising, and sampling. Our paper sets out to analyze DA methods in detail according to the above categories. Further, we also introduce their applications in NLP tasks as well as the challenges.

北京阿比特科技有限公司