Robotic systems for manipulation in millimeter scale often use a camera with high magnification for visual feedback of the target region. However, the limited field-of-view (FoV) of the microscopic camera necessitates camera motion to capture a broader workspace environment. In this work, we propose an autonomous robotic control method to constrain a robot-held camera within a designated FoV. Furthermore, we model the camera extrinsics as part of the kinematic model and use camera measurements coupled with a U-Net based tool tracking to adapt the complete robotic model during task execution. As a proof-of-concept demonstration, the proposed framework was evaluated in a bi-manual setup, where the microscopic camera was controlled to view a tool moving in a pre-defined trajectory. The proposed method allowed the camera to stay 99.5% of the time within the real FoV, compared to 48.1% without the proposed adaptive control.
This paper focuses on the problem of detecting and reacting to changes in the distribution of a sensorimotor controller's observables. The key idea is the design of switching policies that can take conformal quantiles as input, which we define as conformal policy learning, that allows robots to detect distribution shifts with formal statistical guarantees. We show how to design such policies by using conformal quantiles to switch between base policies with different characteristics, e.g. safety or speed, or directly augmenting a policy observation with a quantile and training it with reinforcement learning. Theoretically, we show that such policies achieve the formal convergence guarantees in finite time. In addition, we thoroughly evaluate their advantages and limitations on two compelling use cases: simulated autonomous driving and active perception with a physical quadruped. Empirical results demonstrate that our approach outperforms five baselines. It is also the simplest of the baseline strategies besides one ablation. Being easy to use, flexible, and with formal guarantees, our work demonstrates how conformal prediction can be an effective tool for sensorimotor learning under uncertainty.
We propose a conceptually simple and lightweight framework for improving the robustness of vision models through the combination of knowledge distillation and data augmentation. We address the conjecture that larger models do not make for better teachers by showing strong gains in out-of-distribution robustness when distilling from pretrained foundation models. Following this finding, we propose Discrete Adversarial Distillation (DAD), which leverages a robust teacher to generate adversarial examples and a VQGAN to discretize them, creating more informative samples than standard data augmentation techniques. We provide a theoretical framework for the use of a robust teacher in the knowledge distillation with data augmentation setting and demonstrate strong gains in out-of-distribution robustness and clean accuracy across different student architectures. Notably, our method adds minor computational overhead compared to similar techniques and can be easily combined with other data augmentations for further improvements.
The proliferation of cameras and personal devices results in a wide variability of imaging conditions, producing large intra-class variations and a significant performance drop when images from heterogeneous environments are compared. However, many applications require to deal with data from different sources regularly, thus needing to overcome these interoperability problems. Here, we employ fusion of several comparators to improve periocular performance when images from different smartphones are compared. We use a probabilistic fusion framework based on linear logistic regression, in which fused scores tend to be log-likelihood ratios, obtaining a reduction in cross-sensor EER of up to 40% due to the fusion. Our framework also provides an elegant and simple solution to handle signals from different devices, since same-sensor and cross-sensor score distributions are aligned and mapped to a common probabilistic domain. This allows the use of Bayes thresholds for optimal decision-making, eliminating the need of sensor-specific thresholds, which is essential in operational conditions because the threshold setting critically determines the accuracy of the authentication process in many applications.
Despite significant research on lightweight deep neural networks (DNNs) designed for edge devices, the current face detectors do not fully meet the requirements for "intelligent" CMOS image sensors (iCISs) integrated with embedded DNNs. These sensors are essential in various practical applications, such as energy-efficient mobile phones and surveillance systems with always-on capabilities. One noteworthy limitation is the absence of suitable face detectors for the always-on scenario, a crucial aspect of image sensor-level applications. These detectors must operate directly with sensor RAW data before the image signal processor (ISP) takes over. This gap poses a significant challenge in achieving optimal performance in such scenarios. Further research and development are necessary to bridge this gap and fully leverage the potential of iCIS applications. In this study, we aim to bridge the gap by exploring extremely low-bit lightweight face detectors, focusing on the always-on face detection scenario for mobile image sensor applications. To achieve this, our proposed model utilizes sensor-aware synthetic RAW inputs, simulating always-on face detection processed "before" the ISP chain. Our approach employs ternary (-1, 0, 1) weights for potential implementations in image sensors, resulting in a relatively simple network architecture with shallow layers and extremely low-bitwidth. Our method demonstrates reasonable face detection performance and excellent efficiency in simulation studies, offering promising possibilities for practical always-on face detectors in real-world applications.
This paper proposes a label-free controller for a second-order multi-agent system to cooperatively fence a moving target of variational velocity into a convex hull formed by the agents whereas maintaining a rigid formation. Therein, no label is predetermined for a specified agent. To attain a rigid formation with guaranteed collision avoidance, each controller consists of two terms: a dynamic regulator with an internal model to drive agents towards the moving target merely by position information feedback, and a repulsive force between each pair of adjacent agents. Significantly, sufficient conditions are derived to guarantee the asymptotic stability of the closed-loop systems governed by the proposed fencing controller. Rigorous analysis is provided to eliminate the strong nonlinear couplings induced by the label-free property. Finally, the effectiveness of the controller is substantiated by numerical simulations.
As human-robot interaction (HRI) systems advance, so does the difficulty of evaluating and understanding the strengths and limitations of these systems in different environments and with different users. To this end, previous methods have algorithmically generated diverse scenarios that reveal system failures in a shared control teleoperation task. However, these methods require directly evaluating generated scenarios by simulating robot policies and human actions. The computational cost of these evaluations limits their applicability in more complex domains. Thus, we propose augmenting scenario generation systems with surrogate models that predict both human and robot behaviors. In the shared control teleoperation domain and a more complex shared workspace collaboration task, we show that surrogate assisted scenario generation efficiently synthesizes diverse datasets of challenging scenarios. We demonstrate that these failures are reproducible in real-world interactions.
Recommender systems play a crucial role in helping users discover information that aligns with their interests based on their past behaviors. However, developing personalized recommendation systems becomes challenging when historical records of user-item interactions are unavailable, leading to what is known as the system cold-start recommendation problem. This issue is particularly prominent in start-up businesses or platforms with insufficient user engagement history. Previous studies focus on user or item cold-start scenarios, where systems could make recommendations for new users or items but are still trained with historical user-item interactions in the same domain, which cannot solve our problem. To bridge the gap, our research introduces an innovative and effective approach, capitalizing on the capabilities of pre-trained language models. We transform the recommendation process into sentiment analysis of natural languages containing information of user profiles and item attributes, where the sentiment polarity is predicted with prompt learning. By harnessing the extensive knowledge housed within language models, the prediction can be made without historical user-item interaction records. A benchmark is also introduced to evaluate the proposed method under the cold-start setting, and the results demonstrate the effectiveness of our method. To the best of our knowledge, this is the first study to tackle the system cold-start recommendation problem. The benchmark and implementation of the method are available at //github.com/JacksonWuxs/PromptRec.
Large-scale task planning is a major challenge. Recent work exploits large language models (LLMs) directly as a policy and shows surprisingly interesting results. This paper shows that LLMs provide a commonsense model of the world in addition to a policy that acts on it. The world model and the policy can be combined in a search algorithm, such as Monte Carlo Tree Search (MCTS), to scale up task planning. In our new LLM-MCTS algorithm, the LLM-induced world model provides a commonsense prior belief for MCTS to achieve effective reasoning; the LLM-induced policy acts as a heuristic to guide the search, vastly improving search efficiency. Experiments show that LLM-MCTS outperforms both MCTS alone and policies induced by LLMs (GPT2 and GPT3.5) by a wide margin, for complex, novel tasks. Further experiments and analyses on multiple tasks -- multiplication, multi-hop travel planning, object rearrangement -- suggest minimum description length (MDL) as a general guiding principle: if the description length of the world model is substantially smaller than that of the policy, using LLM as a world model for model-based planning is likely better than using LLM solely as a policy.
Recent advancements in deep neural networks for graph-structured data have led to state-of-the-art performance on recommender system benchmarks. However, making these methods practical and scalable to web-scale recommendation tasks with billions of items and hundreds of millions of users remains a challenge. Here we describe a large-scale deep recommendation engine that we developed and deployed at Pinterest. We develop a data-efficient Graph Convolutional Network (GCN) algorithm PinSage, which combines efficient random walks and graph convolutions to generate embeddings of nodes (i.e., items) that incorporate both graph structure as well as node feature information. Compared to prior GCN approaches, we develop a novel method based on highly efficient random walks to structure the convolutions and design a novel training strategy that relies on harder-and-harder training examples to improve robustness and convergence of the model. We also develop an efficient MapReduce model inference algorithm to generate embeddings using a trained model. We deploy PinSage at Pinterest and train it on 7.5 billion examples on a graph with 3 billion nodes representing pins and boards, and 18 billion edges. According to offline metrics, user studies and A/B tests, PinSage generates higher-quality recommendations than comparable deep learning and graph-based alternatives. To our knowledge, this is the largest application of deep graph embeddings to date and paves the way for a new generation of web-scale recommender systems based on graph convolutional architectures.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.