亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A new perspective is introduced regarding the analysis of Multiple Sequence Alignments (MSA), representing aligned data defined over a finite alphabet of symbols. The framework is designed to produce a block decomposition of an MSA, where each block is comprised of sequences exhibiting a certain site-coherence. The key component of this framework is an information theoretical potential defined on pairs of sites (links) within the MSA. This potential quantifies the expected drop in variation of information between the two constituent sites, where the expectation is taken with respect to all possible sub-alignments, obtained by removing a finite, fixed collection of rows. It is proved that the potential is zero for linked sites representing columns, whose symbols are in bijective correspondence and it is strictly positive, otherwise. It is furthermore shown that the potential assumes its unique minimum for links at which each symbol pair appears with the same multiplicity. Finally, an application is presented regarding anomaly detection in an MSA, composed of inverse fold solutions of a fixed tRNA secondary structure, where the anomalies are represented by inverse fold solutions of a different RNA structure.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 統計量 · Analysis · 推斷 · 數據分析 ·
2024 年 2 月 23 日

This paper revisits the classical concept of network modularity and its spectral relaxations used throughout graph data analysis. We formulate and study several modularity statistic variants for which we establish asymptotic distributional results in the large-network limit for networks exhibiting nodal community structure. Our work facilitates testing for network differences and can be used in conjunction with existing theoretical guarantees for stochastic blockmodel random graphs. Our results are enabled by recent advances in the study of low-rank truncations of large network adjacency matrices. We provide confirmatory simulation studies and real data analysis pertaining to the network neuroscience study of psychosis, specifically schizophrenia. Collectively, this paper contributes to the limited existing literature to date on statistical inference for modularity-based network analysis. Supplemental materials for this article are available online.

Digital credentials represent a cornerstone of digital identity on the Internet. To achieve privacy, certain functionalities in credentials should be implemented. One is selective disclosure, which allows users to disclose only the claims or attributes they want. This paper presents a novel approach to selective disclosure that combines Merkle hash trees and Boneh-Lynn-Shacham (BLS) signatures. Combining these approaches, we achieve selective disclosure of claims in a single credential and creation of a verifiable presentation containing selectively disclosed claims from multiple credentials signed by different parties. Besides selective disclosure, we enable issuing credentials signed by multiple issuers using this approach.

The roto-translation group SE2 has been of active interest in image analysis due to methods that lift the image data to multi-orientation representations defined on this Lie group. This has led to impactful applications of crossing-preserving flows for image de-noising, geodesic tracking, and roto-translation equivariant deep learning. In this paper, we develop a computational framework for optimal transportation over Lie groups, with a special focus on SE2. We make several theoretical contributions (generalizable to matrix Lie groups) such as the non-optimality of group actions as transport maps, invariance and equivariance of optimal transport, and the quality of the entropic-regularized optimal transport plan using geodesic distance approximations. We develop a Sinkhorn like algorithm that can be efficiently implemented using fast and accurate distance approximations of the Lie group and GPU-friendly group convolutions. We report valuable advancements in the experiments on 1) image barycenters, 2) interpolation of planar orientation fields, and 3) Wasserstein gradient flows on SE2. We observe that our framework of lifting images to SE2 and optimal transport with left-invariant anisotropic metrics leads to equivariant transport along dominant contours and salient line structures in the image. This yields sharper and more meaningful interpolations compared to their counterparts on $\mathbb{R}^2$

Mendelian randomization uses genetic variants as instrumental variables to make causal inferences about the effects of modifiable risk factors on diseases from observational data. One of the major challenges in Mendelian randomization is that many genetic variants are only modestly or even weakly associated with the risk factor of interest, a setting known as many weak instruments. Many existing methods, such as the popular inverse-variance weighted (IVW) method, could be biased when the instrument strength is weak. To address this issue, the debiased IVW (dIVW) estimator, which is shown to be robust to many weak instruments, was recently proposed. However, this estimator still has non-ignorable bias when the effective sample size is small. In this paper, we propose a modified debiased IVW (mdIVW) estimator by multiplying a modification factor to the original dIVW estimator. After this simple correction, we show that the bias of the mdIVW estimator converges to zero at a faster rate than that of the dIVW estimator under some regularity conditions. Moreover, the mdIVW estimator has smaller variance than the dIVW estimator.We further extend the proposed method to account for the presence of instrumental variable selection and balanced horizontal pleiotropy. We demonstrate the improvement of the mdIVW estimator over the dIVW estimator through extensive simulation studies and real data analysis.

We introduce the concept of Automated Causal Discovery (AutoCD), defined as any system that aims to fully automate the application of causal discovery and causal reasoning methods. AutoCD's goal is to deliver all causal information that an expert human analyst would and answer a user's causal queries. We describe the architecture of such a platform, and illustrate its performance on synthetic data sets. As a case study, we apply it on temporal telecommunication data. The system is general and can be applied to a plethora of causal discovery problems.

Autoencoders (AE) are simple yet powerful class of neural networks that compress data by projecting input into low-dimensional latent space (LS). Whereas LS is formed according to the loss function minimization during training, its properties and topology are not controlled directly. In this paper we focus on AE LS properties and propose two methods for obtaining LS with desired topology, called LS configuration. The proposed methods include loss configuration using a geometric loss term that acts directly in LS, and encoder configuration. We show that the former allows to reliably obtain LS with desired configuration by defining the positions and shapes of LS clusters for supervised AE (SAE). Knowing LS configuration allows to define similarity measure in LS to predict labels or estimate similarity for multiple inputs without using decoders or classifiers. We also show that this leads to more stable and interpretable training. We show that SAE trained for clothes texture classification using the proposed method generalizes well to unseen data from LIP, Market1501, and WildTrack datasets without fine-tuning, and even allows to evaluate similarity for unseen classes. We further illustrate the advantages of pre-configured LS similarity estimation with cross-dataset searches and text-based search using a text query without language models.

Genome assembly is a prominent problem studied in bioinformatics, which computes the source string using a set of its overlapping substrings. Classically, genome assembly uses assembly graphs built using this set of substrings to compute the source string efficiently, having a tradeoff between scalability and avoiding information loss. The scalable de Bruijn graphs come at the price of losing crucial overlap information. The complete overlap information is stored in overlap graphs using quadratic space. Hierarchical overlap graphs [IPL20] (HOG) overcome these limitations, avoiding information loss despite using linear space. After a series of suboptimal improvements, Khan and Park et al. simultaneously presented two optimal algorithms [CPM2021], where only the former was seemingly practical. We empirically analyze all the practical algorithms for computing HOG, where the optimal algorithm [CPM2021] outperforms the previous algorithms as expected, though at the expense of extra memory. However, it uses non-intuitive approach and non-trivial data structures. We present arguably the most intuitive algorithm, using only elementary arrays, which is also optimal. Our algorithm empirically proves even better for both time and memory over all the algorithms, highlighting its significance in both theory and practice. We further explore the applications of hierarchical overlap graphs to solve various forms of suffix-prefix queries on a set of strings. Loukides et al. [CPM2023] recently presented state-of-the-art algorithms for these queries. However, these algorithms require complex black-box data structures and are seemingly impractical. Our algorithms, despite failing to match the state-of-the-art algorithms theoretically, answer different queries ranging from 0.01-100 milliseconds for a data set having around a billion characters.

There are several ways to establish the asymptotic normality of $L$-statistics, depending upon the selection of the weights generating function and the cumulative distribution function of the underlying model. Here, in this paper it is shown that the two of the asymptotic approaches are equivalent/equal for a particular choice of the weights generating function.

Time-series models typically assume untainted and legitimate streams of data. However, a self-interested adversary may have incentive to corrupt this data, thereby altering a decision maker's inference. Within the broader field of adversarial machine learning, this research provides a novel, probabilistic perspective toward the manipulation of hidden Markov model inferences via corrupted data. In particular, we provision a suite of corruption problems for filtering, smoothing, and decoding inferences leveraging an adversarial risk analysis approach. Multiple stochastic programming models are set forth that incorporate realistic uncertainties and varied attacker objectives. Three general solution methods are developed by alternatively viewing the problem from frequentist and Bayesian perspectives. The efficacy of each method is illustrated via extensive, empirical testing. The developed methods are characterized by their solution quality and computational effort, resulting in a stratification of techniques across varying problem-instance architectures. This research highlights the weaknesses of hidden Markov models under adversarial activity, thereby motivating the need for robustification techniques to ensure their security.

The remarkable practical success of deep learning has revealed some major surprises from a theoretical perspective. In particular, simple gradient methods easily find near-optimal solutions to non-convex optimization problems, and despite giving a near-perfect fit to training data without any explicit effort to control model complexity, these methods exhibit excellent predictive accuracy. We conjecture that specific principles underlie these phenomena: that overparametrization allows gradient methods to find interpolating solutions, that these methods implicitly impose regularization, and that overparametrization leads to benign overfitting. We survey recent theoretical progress that provides examples illustrating these principles in simpler settings. We first review classical uniform convergence results and why they fall short of explaining aspects of the behavior of deep learning methods. We give examples of implicit regularization in simple settings, where gradient methods lead to minimal norm functions that perfectly fit the training data. Then we review prediction methods that exhibit benign overfitting, focusing on regression problems with quadratic loss. For these methods, we can decompose the prediction rule into a simple component that is useful for prediction and a spiky component that is useful for overfitting but, in a favorable setting, does not harm prediction accuracy. We focus specifically on the linear regime for neural networks, where the network can be approximated by a linear model. In this regime, we demonstrate the success of gradient flow, and we consider benign overfitting with two-layer networks, giving an exact asymptotic analysis that precisely demonstrates the impact of overparametrization. We conclude by highlighting the key challenges that arise in extending these insights to realistic deep learning settings.

北京阿比特科技有限公司