Since DNN is vulnerable to carefully crafted adversarial examples, adversarial attack on LiDAR sensors have been extensively studied. We introduce a robust black-box attack dubbed LiDAttack. It utilizes a genetic algorithm with a simulated annealing strategy to strictly limit the location and number of perturbation points, achieving a stealthy and effective attack. And it simulates scanning deviations, allowing it to adapt to dynamic changes in real world scenario variations. Extensive experiments are conducted on 3 datasets (i.e., KITTI, nuScenes, and self-constructed data) with 3 dominant object detection models (i.e., PointRCNN, PointPillar, and PV-RCNN++). The results reveal the efficiency of the LiDAttack when targeting a wide range of object detection models, with an attack success rate (ASR) up to 90%.
With the growing interest in underwater exploration and monitoring, Autonomous Underwater Vehicles (AUVs) have become essential. The recent interest in onboard Deep Learning (DL) has advanced real-time environmental interaction capabilities relying on efficient and accurate vision-based DL models. However, the predominant use of sonar in underwater environments, characterized by limited training data and inherent noise, poses challenges to model robustness. This autonomy improvement raises safety concerns for deploying such models during underwater operations, potentially leading to hazardous situations. This paper aims to provide the first comprehensive overview of sonar-based DL under the scope of robustness. It studies sonar-based DL perception task models, such as classification, object detection, segmentation, and SLAM. Furthermore, the paper systematizes sonar-based state-of-the-art datasets, simulators, and robustness methods such as neural network verification, out-of-distribution, and adversarial attacks. This paper highlights the lack of robustness in sonar-based DL research and suggests future research pathways, notably establishing a baseline sonar-based dataset and bridging the simulation-to-reality gap.
Recent advancements in Large Vision Language Models (LVLMs) have revolutionized how machines understand and generate textual responses based on visual inputs, yet they often produce "hallucinatory" outputs that misinterpret visual information, posing challenges in reliability and trustworthiness. We propose RITUAL, a simple decoding method that reduces hallucinations by leveraging randomly transformed images as complementary inputs during decoding, adjusting the output probability distribution without additional training or external models. Our key insight is that random transformations expose the model to diverse visual perspectives, enabling it to correct misinterpretations that lead to hallucinations. Specifically, when a model hallucinates based on the original image, the transformed images -- altered in aspects such as orientation, scale, or color -- provide alternative viewpoints that help recalibrate the model's predictions. By integrating the probability distributions from both the original and transformed images, RITUAL effectively reduces hallucinations. To further improve reliability and address potential instability from arbitrary transformations, we introduce RITUAL+, an extension that selects image transformations based on self-feedback from the LVLM. Instead of applying transformations randomly, RITUAL+ uses the LVLM to evaluate and choose transformations that are most beneficial for reducing hallucinations in a given context. This self-adaptive approach mitigates the potential negative impact of certain transformations on specific tasks, ensuring more consistent performance across different scenarios. Experiments demonstrate that RITUAL and RITUAL+ significantly reduce hallucinations across several object hallucination benchmarks.
The convergence behavior of Stochastic Gradient Descent (SGD) crucially depends on the stepsize configuration. When using a constant stepsize, the SGD iterates form a Markov chain, enjoying fast convergence during the initial transient phase. However, when reaching stationarity, the iterates oscillate around the optimum without making further progress. In this paper, we study the convergence diagnostics for SGD with constant stepsize, aiming to develop an effective dynamic stepsize scheme. We propose a novel coupling-based convergence diagnostic procedure, which monitors the distance of two coupled SGD iterates for stationarity detection. Our diagnostic statistic is simple and is shown to track the transition from transience stationarity theoretically. We conduct extensive numerical experiments and compare our method against various existing approaches. Our proposed coupling-based stepsize scheme is observed to achieve superior performance across a diverse set of convex and non-convex problems. Moreover, our results demonstrate the robustness of our approach to a wide range of hyperparameters.
Video face swapping is becoming increasingly popular across various applications, yet existing methods primarily focus on static images and struggle with video face swapping because of temporal consistency and complex scenarios. In this paper, we present the first diffusion-based framework specifically designed for video face swapping. Our approach introduces a novel image-video hybrid training framework that leverages both abundant static image data and temporal video sequences, addressing the inherent limitations of video-only training. The framework incorporates a specially designed diffusion model coupled with a VidFaceVAE that effectively processes both types of data to better maintain temporal coherence of the generated videos. To further disentangle identity and pose features, we construct the Attribute-Identity Disentanglement Triplet (AIDT) Dataset, where each triplet has three face images, with two images sharing the same pose and two sharing the same identity. Enhanced with a comprehensive occlusion augmentation, this dataset also improves robustness against occlusions. Additionally, we integrate 3D reconstruction techniques as input conditioning to our network for handling large pose variations. Extensive experiments demonstrate that our framework achieves superior performance in identity preservation, temporal consistency, and visual quality compared to existing methods, while requiring fewer inference steps. Our approach effectively mitigates key challenges in video face swapping, including temporal flickering, identity preservation, and robustness to occlusions and pose variations.
Table understanding (TU) has achieved promising advancements, but it faces the challenges of the scarcity of manually labeled tables and the presence of complex table structures.To address these challenges, we propose HGT, a framework with a heterogeneous graph (HG)-enhanced large language model (LLM) to tackle few-shot TU tasks.It leverages the LLM by aligning the table semantics with the LLM's parametric knowledge through soft prompts and instruction turning and deals with complex tables by a multi-task pre-training scheme involving three novel multi-granularity self-supervised HG pre-training objectives.We empirically demonstrate the effectiveness of HGT, showing that it outperforms the SOTA for few-shot complex TU on several benchmarks.
Significant achievements in personalization of diffusion models have been witnessed. Conventional tuning-free methods mostly encode multiple reference images by averaging their image embeddings as the injection condition, but such an image-independent operation cannot perform interaction among images to capture consistent visual elements within multiple references. Although the tuning-based Low-Rank Adaptation (LoRA) can effectively extract consistent elements within multiple images through the training process, it necessitates specific finetuning for each distinct image group. This paper introduces EasyRef, a novel plug-and-play adaptation method that enables diffusion models to be conditioned on multiple reference images and the text prompt. To effectively exploit consistent visual elements within multiple images, we leverage the multi-image comprehension and instruction-following capabilities of the multimodal large language model (MLLM), prompting it to capture consistent visual elements based on the instruction. Besides, injecting the MLLM's representations into the diffusion process through adapters can easily generalize to unseen domains, mining the consistent visual elements within unseen data. To mitigate computational costs and enhance fine-grained detail preservation, we introduce an efficient reference aggregation strategy and a progressive training scheme. Finally, we introduce MRBench, a new multi-reference image generation benchmark. Experimental results demonstrate EasyRef surpasses both tuning-free methods like IP-Adapter and tuning-based methods like LoRA, achieving superior aesthetic quality and robust zero-shot generalization across diverse domains.
Large Language Models (LLMs) have demonstrated remarkable capabilities across various tasks, yet they often struggle with spatial reasoning. This paper presents a novel neural-symbolic framework that enhances LLMs' spatial reasoning abilities through iterative feedback between LLMs and Answer Set Programming (ASP). We evaluate our approach on two benchmark datasets: StepGame and SparQA, implementing three distinct strategies: (1) direct prompting baseline, (2) Facts+Rules prompting, and (3) DSPy-based LLM+ASP pipeline with iterative refinement. Our experimental results demonstrate that the LLM+ASP pipeline significantly outperforms baseline methods, achieving an average 82% accuracy on StepGame and 69% on SparQA, marking improvements of 40-50% and 8-15% respectively over direct prompting. The success stems from three key innovations: (1) effective separation of semantic parsing and logical reasoning through a modular pipeline, (2) iterative feedback mechanism between LLMs and ASP solvers that improves program rate, and (3) robust error handling that addresses parsing, grounding, and solving failures. Additionally, we propose Facts+Rules as a lightweight alternative that achieves comparable performance on complex SparQA dataset, while reducing computational overhead.Our analysis across different LLM architectures (Deepseek, Llama3-70B, GPT-4.0 mini) demonstrates the framework's generalizability and provides insights into the trade-offs between implementation complexity and reasoning capability, contributing to the development of more interpretable and reliable AI systems.
We introduce GaussianOcc, a systematic method that investigates the two usages of Gaussian splatting for fully self-supervised and efficient 3D occupancy estimation in surround views. First, traditional methods for self-supervised 3D occupancy estimation still require ground truth 6D poses from sensors during training. To address this limitation, we propose Gaussian Splatting for Projection (GSP) module to provide accurate scale information for fully self-supervised training from adjacent view projection. Additionally, existing methods rely on volume rendering for final 3D voxel representation learning using 2D signals (depth maps, semantic maps), which is both time-consuming and less effective. We propose Gaussian Splatting from Voxel space (GSV) to leverage the fast rendering properties of Gaussian splatting. As a result, the proposed GaussianOcc method enables fully self-supervised (no ground truth pose) 3D occupancy estimation in competitive performance with low computational cost (2.7 times faster in training and 5 times faster in rendering). The relevant code is available in //github.com/GANWANSHUI/GaussianOcc.git.
Class imbalance would lead to biased classifiers that favor the majority class and disadvantage the minority class. Unfortunately, from a practical perspective, the minority class is of importance in many real-life applications. Hybrid sampling methods address this by oversampling the minority class to increase the number of its instances, followed by undersampling to remove low-quality instances. However, most existing sampling methods face difficulties in generating diverse high-quality instances and often fail to remove noise or low-quality instances on a larger scale effectively. This paper therefore proposes an evolutionary multi-granularity hybrid sampling method, called EvoSampling. During the oversampling process, genetic programming (GP) is used with multi-task learning to effectively and efficiently generate diverse high-quality instances. During the undersampling process, we develop a granular ball-based undersampling method that removes noise in a multi-granular fashion, thereby enhancing data quality. Experiments on 20 imbalanced datasets demonstrate that EvoSampling effectively enhances the performance of various classification algorithms by providing better datasets than existing sampling methods. Besides, ablation studies further indicate that allowing knowledge transfer accelerates the GP's evolutionary learning process.
The requirements for real-world manipulation tasks are diverse and often conflicting; some tasks require precise motion while others require force compliance; some tasks require avoidance of certain regions, while others require convergence to certain states. Satisfying these varied requirements with a fixed state-action representation and control strategy is challenging, impeding the development of a universal robotic foundation model. In this work, we propose Meta-Control, the first LLM-enabled automatic control synthesis approach that creates customized state representations and control strategies tailored to specific tasks. Our core insight is that a meta-control system can be built to automate the thought process that human experts use to design control systems. Specifically, human experts heavily use a model-based, hierarchical (from abstract to concrete) thought model, then compose various dynamic models and controllers together to form a control system. Meta-Control mimics the thought model and harnesses LLM's extensive control knowledge with Socrates' "art of midwifery" to automate the thought process. Meta-Control stands out for its fully model-based nature, allowing rigorous analysis, generalizability, robustness, efficient parameter tuning, and reliable real-time execution.