亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

AI advice is becoming increasingly popular, e.g., in investment and medical treatment decisions. As this advice is typically imperfect, decision-makers have to exert discretion as to whether actually follow that advice: they have to "appropriately" rely on correct and turn down incorrect advice. However, current research on appropriate reliance still lacks a common definition as well as an operational measurement concept. Additionally, no in-depth behavioral experiments have been conducted that help understand the factors influencing this behavior. In this paper, we propose Appropriateness of Reliance (AoR) as an underlying, quantifiable two-dimensional measurement concept. We develop a research model that analyzes the effect of providing explanations for AI advice. In an experiment with 200 participants, we demonstrate how these explanations influence the AoR, and, thus, the effectiveness of AI advice. Our work contributes fundamental concepts for the analysis of reliance behavior and the purposeful design of AI advisors.

相關內容

人工智(zhi)(zhi)(zhi)能(neng)雜志(zhi)AI(Artificial Intelligence)是(shi)目前公認的(de)(de)(de)發表該(gai)(gai)(gai)領域最(zui)新研究成果(guo)的(de)(de)(de)主要國(guo)際論(lun)(lun)(lun)(lun)壇。該(gai)(gai)(gai)期刊歡迎(ying)有關(guan)AI廣泛方面(mian)的(de)(de)(de)論(lun)(lun)(lun)(lun)文,這(zhe)些(xie)論(lun)(lun)(lun)(lun)文構成了(le)整個(ge)領域的(de)(de)(de)進步,也歡迎(ying)介紹人工智(zhi)(zhi)(zhi)能(neng)應(ying)(ying)用的(de)(de)(de)論(lun)(lun)(lun)(lun)文,但重點應(ying)(ying)該(gai)(gai)(gai)放在新的(de)(de)(de)和新穎的(de)(de)(de)人工智(zhi)(zhi)(zhi)能(neng)方法如(ru)何提高(gao)應(ying)(ying)用領域的(de)(de)(de)性能(neng),而不(bu)是(shi)介紹傳統人工智(zhi)(zhi)(zhi)能(neng)方法的(de)(de)(de)另一個(ge)應(ying)(ying)用。關(guan)于應(ying)(ying)用的(de)(de)(de)論(lun)(lun)(lun)(lun)文應(ying)(ying)該(gai)(gai)(gai)描述一個(ge)原則性的(de)(de)(de)解決方案(an),強調其新穎性,并對正在開(kai)發的(de)(de)(de)人工智(zhi)(zhi)(zhi)能(neng)技術進行深入(ru)的(de)(de)(de)評估。 官網(wang)地址(zhi):

Large language models (LMs) such as GPT-4 are very powerful and can process different kinds of natural language processing (NLP) tasks. However, it can be difficult to interpret the results due to the multi-layer nonlinear model structure and millions of parameters. Lack of understanding of how the model works can make the model unreliable and dangerous for everyday users in real-world scenarios. Most recent works exploit the weights of attention to provide explanations for model predictions. However, pure attention-based explanation is unable to support the growing complexity of the models, and cannot reason about their decision-making processes. Thus, we propose LMExplainer, a knowledge-enhanced interpretation module for language models that can provide human-understandable explanations. We use a knowledge graph (KG) and a graph attention neural network to extract the key decision signals of the LM. We further explore whether interpretation can also help AI understand the task better. Our experimental results show that LMExplainer outperforms existing LM+KG methods on CommonsenseQA and OpenBookQA. We also compare the explanation results with generated explanation methods and human-annotated results. The comparison shows our method can provide more comprehensive and clearer explanations. LMExplainer demonstrates the potential to enhance model performance and furnish explanations for the reasoning processes of models in natural language.

We develop a network of Bayesian agents that collectively model the mental states of teammates from the observed communication. Using a generative computational approach to cognition, we make two contributions. First, we show that our agent could generate interventions that improve the collective intelligence of a human-AI team beyond what humans alone would achieve. Second, we develop a real-time measure of human's theory of mind ability and test theories about human cognition. We use data collected from an online experiment in which 145 individuals in 29 human-only teams of five communicate through a chat-based system to solve a cognitive task. We find that humans (a) struggle to fully integrate information from teammates into their decisions, especially when communication load is high, and (b) have cognitive biases which lead them to underweight certain useful, but ambiguous, information. Our theory of mind ability measure predicts both individual- and team-level performance. Observing teams' first 25% of messages explains about 8% of the variation in final team performance, a 170% improvement compared to the current state of the art.

Continual domain shift poses a significant challenge in real-world applications, particularly in situations where labeled data is not available for new domains. The challenge of acquiring knowledge in this problem setting is referred to as unsupervised continual domain shift learning. Existing methods for domain adaptation and generalization have limitations in addressing this issue, as they focus either on adapting to a specific domain or generalizing to unseen domains, but not both. In this paper, we propose Complementary Domain Adaptation and Generalization (CoDAG), a simple yet effective learning framework that combines domain adaptation and generalization in a complementary manner to achieve three major goals of unsupervised continual domain shift learning: adapting to a current domain, generalizing to unseen domains, and preventing forgetting of previously seen domains. Our approach is model-agnostic, meaning that it is compatible with any existing domain adaptation and generalization algorithms. We evaluate CoDAG on several benchmark datasets and demonstrate that our model outperforms state-of-the-art models in all datasets and evaluation metrics, highlighting its effectiveness and robustness in handling unsupervised continual domain shift learning.

In this paper, we concern on the bottom-up paradigm in multi-person pose estimation (MPPE). Most previous bottom-up methods try to consider the relation of instances to identify different body parts during the post processing, while ignoring to model the relation among instances or environment in the feature learning process. In addition, most existing works adopt the operations of upsampling and downsampling. During the sampling process, there will be a problem of misalignment with the source features, resulting in deviations in the keypoint features learned by the model. To overcome the above limitations, we propose a convolutional neural network for bottom-up human pose estimation. It invovles two basic modules: (i) Global Relation Modeling (GRM) module globally learns relation (e.g., environment context, instance interactive information) among region of image by fusing multiple stages features in the feature learning process. It combines with the spatial-channel attention mechanism, which focuses on achieving adaptability in spatial and channel dimensions. (ii) Multi-branch Feature Align (MFA) module aggregates features from multiple branches to align fused feature and obtain refined local keypoint representation. Our model has the ability to focus on different granularity from local to global regions, which significantly boosts the performance of the multi-person pose estimation. Our results on the COCO and CrowdPose datasets demonstrate that it is an efficient framework for multi-person pose estimation.

Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.

Unsupervised domain adaptation has recently emerged as an effective paradigm for generalizing deep neural networks to new target domains. However, there is still enormous potential to be tapped to reach the fully supervised performance. In this paper, we present a novel active learning strategy to assist knowledge transfer in the target domain, dubbed active domain adaptation. We start from an observation that energy-based models exhibit free energy biases when training (source) and test (target) data come from different distributions. Inspired by this inherent mechanism, we empirically reveal that a simple yet efficient energy-based sampling strategy sheds light on selecting the most valuable target samples than existing approaches requiring particular architectures or computation of the distances. Our algorithm, Energy-based Active Domain Adaptation (EADA), queries groups of targe data that incorporate both domain characteristic and instance uncertainty into every selection round. Meanwhile, by aligning the free energy of target data compact around the source domain via a regularization term, domain gap can be implicitly diminished. Through extensive experiments, we show that EADA surpasses state-of-the-art methods on well-known challenging benchmarks with substantial improvements, making it a useful option in the open world. Code is available at //github.com/BIT-DA/EADA.

Deep neural networks (DNNs) have become a proven and indispensable machine learning tool. As a black-box model, it remains difficult to diagnose what aspects of the model's input drive the decisions of a DNN. In countless real-world domains, from legislation and law enforcement to healthcare, such diagnosis is essential to ensure that DNN decisions are driven by aspects appropriate in the context of its use. The development of methods and studies enabling the explanation of a DNN's decisions has thus blossomed into an active, broad area of research. A practitioner wanting to study explainable deep learning may be intimidated by the plethora of orthogonal directions the field has taken. This complexity is further exacerbated by competing definitions of what it means ``to explain'' the actions of a DNN and to evaluate an approach's ``ability to explain''. This article offers a field guide to explore the space of explainable deep learning aimed at those uninitiated in the field. The field guide: i) Introduces three simple dimensions defining the space of foundational methods that contribute to explainable deep learning, ii) discusses the evaluations for model explanations, iii) places explainability in the context of other related deep learning research areas, and iv) finally elaborates on user-oriented explanation designing and potential future directions on explainable deep learning. We hope the guide is used as an easy-to-digest starting point for those just embarking on research in this field.

In the past few decades, artificial intelligence (AI) technology has experienced swift developments, changing everyone's daily life and profoundly altering the course of human society. The intention of developing AI is to benefit humans, by reducing human labor, bringing everyday convenience to human lives, and promoting social good. However, recent research and AI applications show that AI can cause unintentional harm to humans, such as making unreliable decisions in safety-critical scenarios or undermining fairness by inadvertently discriminating against one group. Thus, trustworthy AI has attracted immense attention recently, which requires careful consideration to avoid the adverse effects that AI may bring to humans, so that humans can fully trust and live in harmony with AI technologies. Recent years have witnessed a tremendous amount of research on trustworthy AI. In this survey, we present a comprehensive survey of trustworthy AI from a computational perspective, to help readers understand the latest technologies for achieving trustworthy AI. Trustworthy AI is a large and complex area, involving various dimensions. In this work, we focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being. For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems. We also discuss the accordant and conflicting interactions among different dimensions and discuss potential aspects for trustworthy AI to investigate in the future.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some context). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. In this survey, we review works on explainable recommendation in or before the year of 2019. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation, including user study approaches in the early years and more recent model-based approaches. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research: one dimension is the information source (or display style) of the explanations, and the other dimension is the algorithmic mechanism to generate explainable recommendations. 3) We summarize how explainable recommendation applies to different recommendation tasks, such as product recommendation, social recommendation, and POI recommendation. We also devote a section to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.

北京阿比特科技有限公司