亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Decoding language from neural signals holds considerable theoretical and practical importance. Previous research has indicated the feasibility of decoding text or speech from invasive neural signals. However, when using non-invasive neural signals, significant challenges are encountered due to their low quality. In this study, we proposed a data-driven approach for decoding semantic of language from Magnetoencephalography (MEG) signals recorded while subjects were listening to continuous speech. First, a multi-subject decoding model was trained using contrastive learning to reconstruct continuous word embeddings from MEG data. Subsequently, a beam search algorithm was adopted to generate text sequences based on the reconstructed word embeddings. Given a candidate sentence in the beam, a language model was used to predict the subsequent words. The word embeddings of the subsequent words were correlated with the reconstructed word embedding. These correlations were then used as a measure of the probability for the next word. The results showed that the proposed continuous word embedding model can effectively leverage both subject-specific and subject-shared information. Additionally, the decoded text exhibited significant similarity to the target text, with an average BERTScore of 0.816, a score comparable to that in the previous fMRI study.

相關內容

讓 iOS 8 和 OS X Yosemite 無縫切換的一個新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source:

Student-teacher learning or knowledge distillation (KD) has been previously used to address data scarcity issue for training of speech recognition (ASR) systems. However, a limitation of KD training is that the student model classes must be a proper or improper subset of the teacher model classes. It prevents distillation from even acoustically similar languages if the character sets are not same. In this work, the aforementioned limitation is addressed by proposing a MUltilingual Student-Teacher (MUST) learning which exploits a posteriors mapping approach. A pre-trained mapping model is used to map posteriors from a teacher language to the student language ASR. These mapped posteriors are used as soft labels for KD learning. Various teacher ensemble schemes are experimented to train an ASR model for low-resource languages. A model trained with MUST learning reduces relative character error rate (CER) up to 9.5% in comparison with a baseline monolingual ASR.

Recently efforts have been made by social media platforms as well as researchers to detect hateful or toxic language using large language models. However, none of these works aim to use explanation, additional context and victim community information in the detection process. We utilise different prompt variation, input information and evaluate large language models in zero shot setting (without adding any in-context examples). We select three large language models (GPT-3.5, text-davinci and Flan-T5) and three datasets - HateXplain, implicit hate and ToxicSpans. We find that on average including the target information in the pipeline improves the model performance substantially (~20-30%) over the baseline across the datasets. There is also a considerable effect of adding the rationales/explanations into the pipeline (~10-20%) over the baseline across the datasets. In addition, we further provide a typology of the error cases where these large language models fail to (i) classify and (ii) explain the reason for the decisions they take. Such vulnerable points automatically constitute 'jailbreak' prompts for these models and industry scale safeguard techniques need to be developed to make the models robust against such prompts.

Large language models (LLMs) are typically evaluated on the basis of task-based benchmarks such as MMLU. Such benchmarks do not examine responsible behaviour of LLMs in specific contexts. This is particularly true in the LGBTI+ context where social stereotypes may result in variation in LGBTI+ terminology. Therefore, domain-specific lexicons or dictionaries may be useful as a representative list of words against which the LLM's behaviour needs to be evaluated. This paper presents a methodology for evaluation of LLMs using an LGBTI+ lexicon in Indian languages. The methodology consists of four steps: formulating NLP tasks relevant to the expected behaviour, creating prompts that test LLMs, using the LLMs to obtain the output and, finally, manually evaluating the results. Our qualitative analysis shows that the three LLMs we experiment on are unable to detect underlying hateful content. Similarly, we observe limitations in using machine translation as means to evaluate natural language understanding in languages other than English. The methodology presented in this paper can be useful for LGBTI+ lexicons in other languages as well as other domain-specific lexicons. The work done in this paper opens avenues for responsible behaviour of LLMs, as demonstrated in the context of prevalent social perception of the LGBTI+ community.

The processing and analysis of computed tomography (CT) imaging is important for both basic scientific development and clinical applications. In AutoCT, we provide a comprehensive pipeline that integrates an end-to-end automatic preprocessing, registration, segmentation, and quantitative analysis of 3D CT scans. The engineered pipeline enables atlas-based CT segmentation and quantification leveraging diffeomorphic transformations through efficient forward and inverse mappings. The extracted localized features from the deformation field allow for downstream statistical learning that may facilitate medical diagnostics. On a lightweight and portable software platform, AutoCT provides a new toolkit for the CT imaging community to underpin the deployment of artificial intelligence-driven applications.

Language modeling is a fundamental task in natural language processing, which has been thoroughly explored with various architectures and hyperparameters. However, few studies focus on the effect of sub-word segmentation on the performance of language models (LMs). In this paper, we compare GPT and BERT models trained with the statistical segmentation algorithm BPE vs. two unsupervised algorithms for morphological segmentation -- Morfessor and StateMorph. We train the models for several languages -- including ones with very rich morphology -- and compare their performance with different segmentation algorithms, vocabulary sizes, and model sizes. The results show that training with morphological segmentation allows the LMs to: 1. achieve lower perplexity, 2. converge more efficiently in terms of training time, and 3. achieve equivalent or better evaluation scores on downstream tasks. Lastly, we show 4. that LMs of smaller size using morphological segmentation can perform comparably to models of larger size trained with BPE -- both in terms of (1) perplexity and (3) scores on downstream tasks. Points (2) and (4) impact on sustainability of LMs, since they reduce the model cost: size and computation time. While (2) reduces cost only in the training phase, (4) does so also in the inference phase.

Can a machine understand the meanings of natural language? Recent developments in the generative large language models (LLMs) of artificial intelligence have led to the belief that traditional philosophical assumptions about machine understanding of language need to be revised. This article critically evaluates the prevailing tendency to regard machine language performance as mere syntactic manipulation and the simulation of understanding, which is only partial and very shallow, without sufficient referential grounding in the world. The aim is to highlight the conditions crucial to attributing natural language understanding to state-of-the-art LLMs, where it can be legitimately argued that LLMs not only use syntax but also semantics, their understanding not being simulated but duplicated; and determine how they ground the meanings of linguistic expressions.

Table-to-text systems generate natural language statements from structured data like tables. While end-to-end techniques suffer from low factual correctness (fidelity), a previous study reported gains when using manual logical forms (LF) that represent the selected content and the semantics of the target text. Given the manual step, it was not clear whether automatic LFs would be effective, or whether the improvement came from content selection alone. We present TlT which, given a table and a selection of the content, first produces LFs and then the textual statement. We show for the first time that automatic LFs improve quality, with an increase in fidelity of 30 points over a comparable system not using LFs. Our experiments allow to quantify the remaining challenges for high factual correctness, with automatic selection of content coming first, followed by better Logic-to-Text generation and, to a lesser extent, better Table-to-Logic parsing.

Graph neural networks (GNNs) have been proven to be effective in various network-related tasks. Most existing GNNs usually exploit the low-frequency signals of node features, which gives rise to one fundamental question: is the low-frequency information all we need in the real world applications? In this paper, we first present an experimental investigation assessing the roles of low-frequency and high-frequency signals, where the results clearly show that exploring low-frequency signal only is distant from learning an effective node representation in different scenarios. How can we adaptively learn more information beyond low-frequency information in GNNs? A well-informed answer can help GNNs enhance the adaptability. We tackle this challenge and propose a novel Frequency Adaptation Graph Convolutional Networks (FAGCN) with a self-gating mechanism, which can adaptively integrate different signals in the process of message passing. For a deeper understanding, we theoretically analyze the roles of low-frequency signals and high-frequency signals on learning node representations, which further explains why FAGCN can perform well on different types of networks. Extensive experiments on six real-world networks validate that FAGCN not only alleviates the over-smoothing problem, but also has advantages over the state-of-the-arts.

For languages with no annotated resources, transferring knowledge from rich-resource languages is an effective solution for named entity recognition (NER). While all existing methods directly transfer from source-learned model to a target language, in this paper, we propose to fine-tune the learned model with a few similar examples given a test case, which could benefit the prediction by leveraging the structural and semantic information conveyed in such similar examples. To this end, we present a meta-learning algorithm to find a good model parameter initialization that could fast adapt to the given test case and propose to construct multiple pseudo-NER tasks for meta-training by computing sentence similarities. To further improve the model's generalization ability across different languages, we introduce a masking scheme and augment the loss function with an additional maximum term during meta-training. We conduct extensive experiments on cross-lingual named entity recognition with minimal resources over five target languages. The results show that our approach significantly outperforms existing state-of-the-art methods across the board.

Machine Learning has been the quintessential solution for many AI problems, but learning is still heavily dependent on the specific training data. Some learning models can be incorporated with a prior knowledge in the Bayesian set up, but these learning models do not have the ability to access any organised world knowledge on demand. In this work, we propose to enhance learning models with world knowledge in the form of Knowledge Graph (KG) fact triples for Natural Language Processing (NLP) tasks. Our aim is to develop a deep learning model that can extract relevant prior support facts from knowledge graphs depending on the task using attention mechanism. We introduce a convolution-based model for learning representations of knowledge graph entity and relation clusters in order to reduce the attention space. We show that the proposed method is highly scalable to the amount of prior information that has to be processed and can be applied to any generic NLP task. Using this method we show significant improvement in performance for text classification with News20, DBPedia datasets and natural language inference with Stanford Natural Language Inference (SNLI) dataset. We also demonstrate that a deep learning model can be trained well with substantially less amount of labeled training data, when it has access to organised world knowledge in the form of knowledge graph.

北京阿比特科技有限公司