The vision of Industry 4.0 introduces new requirements to Operational Technology (OT) systems. Solutions for these requirements already exist in the Information Technology (IT) world, however, due to the different characteristics of both worlds, these solutions often cannot be directly used in the world of OT. We therefore propose an Industrial Business Process Twin (IBPT), allowing to apply methods of one world to another not directly but, instead, to a representation, that is in bidirectional exchange with the other world. The proposed IBPT entity acts as an intermediary, decoupling the worlds of IT and OT, thus allowing for an integration of IT and OT components of different manufacturers and platforms. Using this approach, we demonstrate the four essential Industry 4.0 design principles information transparency, technical assistance, interconnection and decentralized decisions based on the gamified Industry 4.0 scenario of playing the game of Nine Men's Morris. This scenario serves well for agent based Artificial Intelligence (AI)-research and education. We develop an Open Platform Communications Unified Architecture (OPC UA) information and communication model and then evaluate the IBPT component with respect to the different views of the Reference Architecture Model Industry 4.0 (RAMI4.0).
Data visualisation and storytelling techniques help experts highlight relations between data and share complex information with a broad audience. However, existing solutions targeted to Linked Open Data visualisation have several restrictions and lack the narrative element. In this article we present MELODY, a web interface for authoring data stories based on Linked Open Data. MELODY has been designed using a novel methodology that harmonises existing Ontology Design and User Experience methodologies (eXtreme Design and Design Thinking), and provides reusable User Interface components to create and publish web-ready article-alike documents based on data retrievable from any SPARQL endpoint. We evaluate the software by comparing it with existing solutions, and we show its potential impact in projects where data dissemination is crucial.
Blockchain, as the basis for cryptocurrencies, has received extensive attentions recently. Blockchain serves as an immutable distributed ledger technology which allows transactions to be carried out credibly in a decentralized environment. Blockchain-based applications are springing up, covering numerous fields including financial services, reputation system and Internet of Things (IoT), and so on. However, there are still many challenges of blockchain technology such as scalability, security and other issues waiting to be overcome. This article provides a comprehensive overview of blockchain technology and its applications. We begin with a summary of the development of blockchain, and then give an overview of the blockchain architecture and a systematic review of the research and application of blockchain technology in different fields from the perspective of academic research and industry technology. Furthermore, technical challenges and recent developments are also briefly listed. We also looked at the possible future trends of blockchain.
The development of cloud computing delivery models inspires the emergence of cloud-native computing. Cloud-native computing, as the most influential development principle for web applications, has already attracted increasingly more attention in both industry and academia. Despite the momentum in the cloud-native industrial community, a clear research roadmap on this topic is still missing. As a contribution to this knowledge, this paper surveys key issues during the life-cycle of cloud-native applications, from the perspective of services. Specifically, we elaborate the research domains by decoupling the life-cycle of cloud-native applications into four states: building, orchestration, operate, and maintenance. We also discuss the fundamental necessities and summarize the key performance metrics that play critical roles during the development and management of cloud-native applications. We highlight the key implications and limitations of existing works in each state. The challenges, future directions, and research opportunities are also discussed.
Digital Identity (DI) technologies have the potential to enhance the quality of life of citizens through the provision of seamless services, improve the effectiveness of public services, and increase overall economic competitiveness. However, lack of access to DIs can limit these benefits, while unequal access can lead to uneven distribution of these benefits across social groups and escalate existing tensions. Accessible, user-friendly and efficient onboarding can play a key role in ensuring equitable access and wide adoption of DI technologies. This paper proposes the development of physical locations (Experience Centres) that can be used for citizen onboarding to national DI systems, positively shaping citizens' first impression with the technology and, in turn, promoting adoption. To this end, we outline a multidisciplinary research approach for identifying and addressing the considerations necessary for designing, developing and operating a model Experience Centre for DI onboarding in an inclusive manner.
Continuum robots suffer large deflections due to internal and external forces. Accurate modeling of their passive compliance is necessary for accurate environmental interaction, especially in scenarios where direct force sensing is not practical. This paper focuses on deriving analytic formulations for the compliance of continuum robots that can be modeled as Kirchhoff rods. Compared to prior works, the approach presented herein is not subject to the constant-curvature assumptions to derive the configuration space compliance, and we do not rely on computationally-expensive finite difference approximations to obtain the task space compliance. Using modal approximations over curvature space and Lie group integration, we obtain closed-form expressions for the task and configuration space compliance matrices of continuum robots, thereby bridging the gap between constant-curvature analytic formulations of configuration space compliance and variable curvature task space compliance. We first present an analytic expression for the compliance of a single Kirchhoff rod. We then extend this formulation for computing both the task space and configuration space compliance of a tendon-actuated continuum robot. We then use our formulation to study the tradeoffs between computation cost and modeling accuracy as well as the loss in accuracy from neglecting the Jacobian derivative term in the compliance model. Finally, we experimentally validate the model on a tendon-actuated continuum segment, demonstrating the model's ability to predict passive deflections with error below 11.5\% percent of total arc length.
The number one criticism of average-case analysis is that we do not actually know the probability distribution of real-world inputs. Thus, analyzing an algorithm on some random model has no implications for practical performance. At its core, this criticism doubts the existence of external validity, i.e., it assumes that algorithmic behavior on the somewhat simple and clean models does not translate beyond the models to practical performance real-world input. With this paper, we provide a first step towards studying the question of external validity systematically. To this end, we evaluate the performance of six graph algorithms on a collection of 2740 sparse real-world networks depending on two properties; the heterogeneity (variance in the degree distribution) and locality (tendency of edges to connect vertices that are already close). We compare this with the performance on generated networks with varying locality and heterogeneity. We find that the performance in the idealized setting of network models translates surprisingly well to real-world networks. Moreover, heterogeneity and locality appear to be the core properties impacting the performance of many graph algorithms.
The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.
Automated Driving Systems (ADS) have made great achievements in recent years thanks to the efforts from both academia and industry. A typical ADS is composed of multiple modules, including sensing, perception, planning and control, which brings together the latest advances in multiple domains. Despite these achievements, safety assurance of the systems is still of great significance, since the unsafe behavior of ADS can bring catastrophic consequences and unacceptable economic and social losses. Testing is an important approach to system validation for the deployment in practice; in the context of ADS, it is extremely challenging, due to the system complexity and multidisciplinarity. There has been a great deal of literature that focuses on the testing of ADS, and a number of surveys have also emerged to summarize the technical advances. However, most of these surveys focus on the system-level testing that is performed within software simulators, and thereby ignore the distinct features of individual modules. In this paper, we provide a comprehensive survey on the existing ADS testing literature, which takes into account both module-level and system-level testing. Specifically, we make the following contributions: (1) we build a threat model that reveals the potential safety threats for each module of an ADS; (2) we survey the module-level testing techniques for ADS and highlight the technical differences affected by the properties of the modules; (3) we also survey the system-level testing techniques, but we focus on empirical studies that take a bird's-eye view on the system, the problems due to the collaborations between modules, and the gaps between ADS testing in simulators and real world; (4) we identify the challenges and opportunities in ADS testing, which facilitates the future research in this field.
Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.
Deep Convolutional Neural Networks (CNNs) are a special type of Neural Networks, which have shown state-of-the-art results on various competitive benchmarks. The powerful learning ability of deep CNN is largely achieved with the use of multiple non-linear feature extraction stages that can automatically learn hierarchical representation from the data. Availability of a large amount of data and improvements in the hardware processing units have accelerated the research in CNNs and recently very interesting deep CNN architectures are reported. The recent race in deep CNN architectures for achieving high performance on the challenging benchmarks has shown that the innovative architectural ideas, as well as parameter optimization, can improve the CNN performance on various vision-related tasks. In this regard, different ideas in the CNN design have been explored such as use of different activation and loss functions, parameter optimization, regularization, and restructuring of processing units. However, the major improvement in representational capacity is achieved by the restructuring of the processing units. Especially, the idea of using a block as a structural unit instead of a layer is gaining substantial appreciation. This survey thus focuses on the intrinsic taxonomy present in the recently reported CNN architectures and consequently, classifies the recent innovations in CNN architectures into seven different categories. These seven categories are based on spatial exploitation, depth, multi-path, width, feature map exploitation, channel boosting and attention. Additionally, it covers the elementary understanding of the CNN components and sheds light on the current challenges and applications of CNNs.