亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Message aggregation is often used with a goal to reduce communication cost in HPC applications. The difference in the order of overhead of sending a message and cost of per byte transferred motivates the need for message aggregation, for several irregular fine-grained messaging applications like graph algorithms and parallel discrete event simulation (PDES). While message aggregation is frequently utilized in "MPI-everywhere" model, to coalesce messages between processes mapped to cores, such aggregation across threads in a process, say in MPI+X models or Charm++ SMP (Shared Memory Parallelism) mode, is often avoided. Within-process coalescing is likely to require synchronization across threads and lead to performance issues from contention. However, as a result, SMP-unaware aggregation mechanisms may not fully utilize aggregation opportunities available to applications in SMP mode. Additionally, while the benefit of message aggregation is often analyzed in terms of reducing the overhead, specifically the per message cost, we also analyze different schemes that can aid in reducing the message latency, ie. the time from when a message is sent to the time when it is received. Message latency can affect several applications like PDES with speculative execution where reducing message latency could result in fewer rollbacks. To address these challenges, in our work, we demonstrate the effectiveness of shared memory-aware message aggregation schemes for a range of proxy applications with respect to messaging overhead and latency.

相關內容

Micro-Action Recognition (MAR) has gained increasing attention due to its crucial role as a form of non-verbal communication in social interactions, with promising potential for applications in human communication and emotion analysis. However, current approaches often overlook the inherent ambiguity in micro-actions, which arises from the wide category range and subtle visual differences between categories. This oversight hampers the accuracy of micro-action recognition. In this paper, we propose a novel Prototypical Calibrating Ambiguous Network (\textbf{PCAN}) to unleash and mitigate the ambiguity of MAR. \textbf{Firstly}, we employ a hierarchical action-tree to identify the ambiguous sample, categorizing them into distinct sets of ambiguous samples of false negatives and false positives, considering both body- and action-level categories. \textbf{Secondly}, we implement an ambiguous contrastive refinement module to calibrate these ambiguous samples by regulating the distance between ambiguous samples and their corresponding prototypes. This calibration process aims to pull false negative ($\mathbb{FN}$) samples closer to their respective prototypes and push false positive ($\mathbb{FP}$) samples apart from their affiliated prototypes. In addition, we propose a new prototypical diversity amplification loss to strengthen the model's capacity by amplifying the differences between different prototypes. \textbf{Finally}, we propose a prototype-guided rectification to rectify prediction by incorporating the representability of prototypes. Extensive experiments conducted on the benchmark dataset demonstrate the superior performance of our method compared to existing approaches. The code is available at //github.com/kunli-cs/PCAN.

To understand a document with multiple events, event-event relation extraction (ERE) emerges as a crucial task, aiming to discern how natural events temporally or structurally associate with each other. To achieve this goal, our work addresses the problems of temporal event relation extraction (TRE) and subevent relation extraction (SRE). The latest methods for such problems have commonly built document-level event graphs for global reasoning across sentences. However, the edges between events are usually derived from external tools heuristically, which are not always reliable and may introduce noise. Moreover, they are not capable of preserving logical constraints among event relations, e.g., coreference constraint, symmetry constraint and conjunction constraint. These constraints guarantee coherence between different relation types,enabling the generation of a uniffed event evolution graph. In this work, we propose a novel method named LogicERE, which performs high-order event relation reasoning through modeling logic constraints. Speciffcally, different from conventional event graphs, we design a logic constraint induced graph (LCG) without any external tools. LCG involves event nodes where the interactions among them can model the coreference constraint, and event pairs nodes where the interactions among them can retain the symmetry constraint and conjunction constraint. Then we perform high-order reasoning on LCG with relational graph transformer to obtain enhanced event and event pair embeddings. Finally, we further incorporate logic constraint information via a joint logic learning module. Extensive experiments demonstrate the effectiveness of the proposed method with state-of-the-art performance on benchmark datasets.

Deep reinforcement learning (RL) has been shown to be effective in producing approximate solutions to some vehicle routing problems (VRPs), especially when using policies generated by encoder-decoder attention mechanisms. While these techniques have been quite successful for relatively simple problem instances, there are still under-researched and highly complex VRP variants for which no effective RL method has been demonstrated. In this work we focus on one such VRP variant, which contains multiple trucks and multi-leg routing requirements. In these problems, demand is required to move along sequences of nodes, instead of just from a start node to an end node. With the goal of making deep RL a viable strategy for real-world industrial-scale supply chain logistics, we develop new extensions to existing encoder-decoder attention models which allow them to handle multiple trucks and multi-leg routing requirements. Our models have the advantage that they can be trained for a small number of trucks and nodes, and then embedded into a large supply chain to yield solutions for larger numbers of trucks and nodes. We test our approach on a real supply chain environment arising in the operations of Japanese automotive parts manufacturer Aisin Corporation, and find that our algorithm outperforms Aisin's previous best solution.

With the application of high-frequency communication and extremely large MIMO (XL-MIMO), the near-field effect has become increasingly apparent. The near-field channel estimation and position estimation problems both rely on the Angle of Arrival (AoA) and the Curvature of Arrival (CoA) estimation. However, in the near-field channel model, the coupling of AoA and CoA information poses a challenge to the estimation of the near-field channel. This paper proposes a Joint Autocorrelation and Cross-correlation (JAC) scheme to decouple AoA and CoA estimation. Based on the JAC scheme, we propose two specific near-field estimation algorithms, namely Inverse Sinc Function (JAC-ISF) and Gradient Descent (JAC-GD) algorithms. Finally, we analyzed the time complexity of the JAC scheme and the cramer-rao lower bound (CRLB) for near-field position estimation. The simulation experiment results show that the algorithm designed based on JAC scheme can solve the problem of coupled CoA and AoA information in near-field estimation, thereby improving the algorithm performance. The JAC-GD algorithm shows significant performance in channel estimation and position estimation at different SNRs, snapshot points, and communication distances compared to other algorithms. This indicates that the JAC-GD algorithm can achieve more accurate channel and position estimation results while saving time overhead.

Existing methods have demonstrated effective performance on a single degradation type. In practical applications, however, the degradation is often unknown, and the mismatch between the model and the degradation will result in a severe performance drop. In this paper, we propose an all-in-one image restoration network that tackles multiple degradations. Due to the heterogeneous nature of different types of degradations, it is difficult to process multiple degradations in a single network. To this end, we propose to learn a neural degradation representation (NDR) that captures the underlying characteristics of various degradations. The learned NDR decomposes different types of degradations adaptively, similar to a neural dictionary that represents basic degradation components. Subsequently, we develop a degradation query module and a degradation injection module to effectively recognize and utilize the specific degradation based on NDR, enabling the all-in-one restoration ability for multiple degradations. Moreover, we propose a bidirectional optimization strategy to effectively drive NDR to learn the degradation representation by optimizing the degradation and restoration processes alternately. Comprehensive experiments on representative types of degradations (including noise, haze, rain, and downsampling) demonstrate the effectiveness and generalization capability of our method.

Distributed inference techniques can be broadly classified into data-distributed and model-distributed schemes. In data-distributed inference (DDI), each worker carries the entire Machine Learning (ML) model but processes only a subset of the data. However, feeding the data to workers results in high communication costs, especially when the data is large. An emerging paradigm is model-distributed inference (MDI), where each worker carries only a subset of ML layers. In MDI, a source device that has data processes a few layers of ML model and sends the output to a neighboring device, i.e., offloads the rest of the layers. This process ends when all layers are processed in a distributed manner. In this paper, we investigate the design and development of MDI when multiple data sources co-exist. We consider that each data source has a different importance and, hence, a priority. We formulate and solve a priority-aware model allocation optimization problem. Based on the structure of the optimal solution, we design a practical Priority-Aware Model- Distributed Inference (PA-MDI) algorithm that determines model allocation and distribution over devices by taking into account the priorities of different sources. Experiments were conducted on a real-life testbed of NVIDIA Jetson Xavier and Nano edge devices as well as in the Colosseum testbed with ResNet-50, ResNet- 56, and GPT-2 models. The experimental results show that PA-MDI performs priority-aware model allocation successfully while reducing the inference time as compared to baselines.

Quadratic programming (QP) forms a crucial foundation in optimization, encompassing a broad spectrum of domains and serving as the basis for more advanced algorithms. Consequently, as the scale and complexity of modern applications continue to grow, the development of efficient and reliable QP algorithms is becoming increasingly vital. In this context, this paper introduces a novel deep learning-aided distributed optimization architecture designed for tackling large-scale QP problems. First, we combine the state-of-the-art Operator Splitting QP (OSQP) method with a consensus approach to derive DistributedQP, a new method tailored for network-structured problems, with convergence guarantees to optimality. Subsequently, we unfold this optimizer into a deep learning framework, leading to DeepDistributedQP, which leverages learned policies to accelerate reaching to desired accuracy within a restricted amount of iterations. Our approach is also theoretically grounded through Probably Approximately Correct (PAC)-Bayes theory, providing generalization bounds on the expected optimality gap for unseen problems. The proposed framework, as well as its centralized version DeepQP, significantly outperform their standard optimization counterparts on a variety of tasks such as randomly generated problems, optimal control, linear regression, transportation networks and others. Notably, DeepDistributedQP demonstrates strong generalization by training on small problems and scaling to solve much larger ones (up to 50K variables and 150K constraints) using the same policy. Moreover, it achieves orders-of-magnitude improvements in wall-clock time compared to OSQP. The certifiable performance guarantees of our approach are also demonstrated, ensuring higher-quality solutions over traditional optimizers.

The key challenge of image manipulation detection is how to learn generalizable features that are sensitive to manipulations in novel data, whilst specific to prevent false alarms on authentic images. Current research emphasizes the sensitivity, with the specificity overlooked. In this paper we address both aspects by multi-view feature learning and multi-scale supervision. By exploiting noise distribution and boundary artifact surrounding tampered regions, the former aims to learn semantic-agnostic and thus more generalizable features. The latter allows us to learn from authentic images which are nontrivial to be taken into account by current semantic segmentation network based methods. Our thoughts are realized by a new network which we term MVSS-Net. Extensive experiments on five benchmark sets justify the viability of MVSS-Net for both pixel-level and image-level manipulation detection.

Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the model scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, \ie node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN outperforms the state-of-the-art GNN-based methods for few-shot learning over the mini-ImageNet and Tiered-ImageNet datasets, with both inductive and transductive settings.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

北京阿比特科技有限公司