亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Nighttime camera-based depth estimation is a highly challenging task, especially for autonomous driving applications, where accurate depth perception is essential for ensuring safe navigation. We aim to improve the reliability of perception systems at night time, where models trained on daytime data often fail in the absence of precise but costly LiDAR sensors. In this work, we introduce Light Enhanced Depth (LED), a novel cost-effective approach that significantly improves depth estimation in low-light environments by harnessing a pattern projected by high definition headlights available in modern vehicles. LED leads to significant performance boosts across multiple depth-estimation architectures (encoder-decoder, Adabins, DepthFormer) both on synthetic and real datasets. Furthermore, increased performances beyond illuminated areas reveal a holistic enhancement in scene understanding. Finally, we release the Nighttime Synthetic Drive Dataset, a new synthetic and photo-realistic nighttime dataset, which comprises 49,990 comprehensively annotated images.

相關內容

Recent developments in monocular depth estimation methods enable high-quality depth estimation of single-view images but fail to estimate consistent video depth across different frames. Recent works address this problem by applying a video diffusion model to generate video depth conditioned on the input video, which is training-expensive and can only produce scale-invariant depth values without camera poses. In this paper, we propose a novel video-depth estimation method called Align3R to estimate temporal consistent depth maps for a dynamic video. Our key idea is to utilize the recent DUSt3R model to align estimated monocular depth maps of different timesteps. First, we fine-tune the DUSt3R model with additional estimated monocular depth as inputs for the dynamic scenes. Then, we apply optimization to reconstruct both depth maps and camera poses. Extensive experiments demonstrate that Align3R estimates consistent video depth and camera poses for a monocular video with superior performance than baseline methods.

We introduce LumiNet, a novel architecture that leverages generative models and latent intrinsic representations for effective lighting transfer. Given a source image and a target lighting image, LumiNet synthesizes a relit version of the source scene that captures the target's lighting. Our approach makes two key contributions: a data curation strategy from the StyleGAN-based relighting model for our training, and a modified diffusion-based ControlNet that processes both latent intrinsic properties from the source image and latent extrinsic properties from the target image. We further improve lighting transfer through a learned adaptor (MLP) that injects the target's latent extrinsic properties via cross-attention and fine-tuning. Unlike traditional ControlNet, which generates images with conditional maps from a single scene, LumiNet processes latent representations from two different images - preserving geometry and albedo from the source while transferring lighting characteristics from the target. Experiments demonstrate that our method successfully transfers complex lighting phenomena including specular highlights and indirect illumination across scenes with varying spatial layouts and materials, outperforming existing approaches on challenging indoor scenes using only images as input.

As the capabilities of code large language models (LLMs) continue to expand, their applications across diverse code intelligence domains are rapidly increasing. However, most existing datasets only evaluate limited application domains. To address this gap, we have developed a comprehensive code evaluation dataset FullStack Bench focusing on full-stack programming, which encompasses a wide range of application domains (e.g., basic programming, data analysis, software engineering, mathematics, and machine learning). Besides, to assess multilingual programming capabilities, in FullStack Bench, we design real-world instructions and corresponding unit test cases from 16 widely-used programming languages to reflect real-world usage scenarios rather than simple translations. Moreover, we also release an effective code sandbox execution tool (i.e., SandboxFusion) supporting various programming languages and packages to evaluate the performance of our FullStack Bench efficiently. Comprehensive experimental results on our FullStack Bench demonstrate the necessity and effectiveness of our FullStack Bench and SandboxFusion.

Existing approaches of hand reconstruction predominantly adhere to a multi-stage framework, encompassing detection, left-right classification, and pose estimation. This paradigm induces redundant computation and cumulative errors. In this work, we propose HandOS, an end-to-end framework for 3D hand reconstruction. Our central motivation lies in leveraging a frozen detector as the foundation while incorporating auxiliary modules for 2D and 3D keypoint estimation. In this manner, we integrate the pose estimation capacity into the detection framework, while at the same time obviating the necessity of using the left-right category as a prerequisite. Specifically, we propose an interactive 2D-3D decoder, where 2D joint semantics is derived from detection cues while 3D representation is lifted from those of 2D joints. Furthermore, hierarchical attention is designed to enable the concurrent modeling of 2D joints, 3D vertices, and camera translation. Consequently, we achieve an end-to-end integration of hand detection, 2D pose estimation, and 3D mesh reconstruction within a one-stage framework, so that the above multi-stage drawbacks are overcome. Meanwhile, the HandOS reaches state-of-the-art performances on public benchmarks, e.g., 5.0 PA-MPJPE on FreiHand and 64.6\% [email protected] on HInt-Ego4D. Project page: idea-research.github.io/HandOSweb.

Diffusion models have demonstrated significant potential in image generation. However, their ability to replicate training data presents a privacy risk, particularly when the training data includes confidential information. Existing mitigation strategies primarily focus on augmenting the training dataset, leaving the impact of diffusion model architecture under explored. In this paper, we address this gap by examining and mitigating the impact of the model structure, specifically the skip connections in the diffusion model's U-Net model. We first present our observation on a trade-off in the skip connections. While they enhance image generation quality, they also reinforce the memorization of training data, increasing the risk of replication. To address this, we propose a replication-aware U-Net (RAU-Net) architecture that incorporates information transfer blocks into skip connections that are less essential for image quality. Recognizing the potential impact of RAU-Net on generation quality, we further investigate and identify specific timesteps during which the impact on memorization is most pronounced. By applying RAU-Net selectively at these critical timesteps, we couple our novel diffusion model with a targeted training and inference strategy, forming a framework we refer to as LoyalDiffusion. Extensive experiments demonstrate that LoyalDiffusion outperforms the state-of-the-art replication mitigation method achieving a 48.63% reduction in replication while maintaining comparable image quality.

This work addresses the critical challenges of upgrading smart contracts, which are vital for trust in automated transactions but difficult to modify once deployed. To address this issue, we propose SEAM, a novel framework that automates the conversion of standard Solidity contracts into upgradable versions using the diamond pattern. SEAM simplifies the upgrade process and addresses two key vulnerabilities: function selector clashes and storage slot collisions. Additionally, the framework provides tools for efficiently deploying, modifying, and managing smart contract lifecycles. By enhancing contract security and reducing the learning curve for developers, SEAM lays a robust foundation for more flexible and maintainable blockchain applications.

We propose TAROT, a targeted data selection framework grounded in optimal transport theory. Previous targeted data selection methods primarily rely on influence-based greedy heuristics to enhance domain-specific performance. While effective on limited, unimodal data (i.e., data following a single pattern), these methods struggle as target data complexity increases. Specifically, in multimodal distributions, these heuristics fail to account for multiple inherent patterns, leading to suboptimal data selection. This work identifies two primary factors contributing to this limitation: (i) the disproportionate impact of dominant feature components in high-dimensional influence estimation, and (ii) the restrictive linear additive assumptions inherent in greedy selection strategies. To address these challenges, TAROT incorporates whitened feature distance to mitigate dominant feature bias, providing a more reliable measure of data influence. Building on this, TAROT uses whitened feature distance to quantify and minimize the optimal transport distance between the selected data and target domains. Notably, this minimization also facilitates the estimation of optimal selection ratios. We evaluate TAROT across multiple tasks, including semantic segmentation, motion prediction, and instruction tuning. Results consistently show that TAROT outperforms state-of-the-art methods, highlighting its versatility across various deep learning tasks. Code is available at //github.com/vita-epfl/TAROT.

Interpretability methods are developed to understand the working mechanisms of black-box models, which is crucial to their responsible deployment. Fulfilling this goal requires both that the explanations generated by these methods are correct and that people can easily and reliably understand them. While the former has been addressed in prior work, the latter is often overlooked, resulting in informal model understanding derived from a handful of local explanations. In this paper, we introduce explanation summary (ExSum), a mathematical framework for quantifying model understanding, and propose metrics for its quality assessment. On two domains, ExSum highlights various limitations in the current practice, helps develop accurate model understanding, and reveals easily overlooked properties of the model. We also connect understandability to other properties of explanations such as human alignment, robustness, and counterfactual minimality and plausibility.

Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some context). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. In this survey, we review works on explainable recommendation in or before the year of 2019. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation, including user study approaches in the early years and more recent model-based approaches. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research: one dimension is the information source (or display style) of the explanations, and the other dimension is the algorithmic mechanism to generate explainable recommendations. 3) We summarize how explainable recommendation applies to different recommendation tasks, such as product recommendation, social recommendation, and POI recommendation. We also devote a section to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.

The design of deep graph models still remains to be investigated and the crucial part is how to explore and exploit the knowledge from different hops of neighbors in an efficient way. In this paper, we propose a novel RNN-like deep graph neural network architecture by incorporating AdaBoost into the computation of network; and the proposed graph convolutional network called AdaGCN~(AdaBoosting Graph Convolutional Network) has the ability to efficiently extract knowledge from high-order neighbors and integrate knowledge from different hops of neighbors into the network in an AdaBoost way. We also present the architectural difference between AdaGCN and existing graph convolutional methods to show the benefits of our proposal. Finally, extensive experiments demonstrate the state-of-the-art prediction performance and the computational advantage of our approach AdaGCN.

北京阿比特科技有限公司