Data storage in DNA is developing as a possible solution for archival digital data. Recently, to further increase the potential capacity of DNA-based data storage systems, the combinatorial composite DNA synthesis method was suggested. This approach extends the DNA alphabet by harnessing short DNA fragment reagents, known as shortmers. The shortmers are building blocks of the alphabet symbols, consisting of a fixed number of shortmers. Thus, when information is read, it is possible that one of the shortmers that forms part of the composition of a symbol is missing and therefore the symbol cannot be determined. In this paper, we model this type of error as a type of asymmetric error and propose code constructions that can correct such errors in this setup. We also provide a lower bound on the redundancy of such error-correcting codes and give an explicit encoder and decoder pair for our construction. Our suggested error model is also supported by an analysis of data from actual experiments that produced DNA according to the combinatorial scheme. Lastly, we also provide a statistical evaluation of the probability of observing such error events, as a function of read depth.
Data valuation is essential for quantifying data's worth, aiding in assessing data quality and determining fair compensation. While existing data valuation methods have proven effective in evaluating the value of Euclidean data, they face limitations when applied to the increasingly popular graph-structured data. Particularly, graph data valuation introduces unique challenges, primarily stemming from the intricate dependencies among nodes and the exponential growth in value estimation costs. To address the challenging problem of graph data valuation, we put forth an innovative solution, Precedence-Constrained Winter (PC-Winter) Value, to account for the complex graph structure. Furthermore, we develop a variety of strategies to address the computational challenges and enable efficient approximation of PC-Winter. Extensive experiments demonstrate the effectiveness of PC-Winter across diverse datasets and tasks.
Broadly, the goal when clustering data is to separate observations into meaningful subgroups. The rich variety of methods for clustering reflects the fact that the relevant notion of meaningful clusters varies across applications. The classical Bayesian approach clusters observations by their association with components of a mixture model; the choice in class of components allows flexibility to capture a range of meaningful cluster notions. However, in practice the range is somewhat limited as difficulties with computation and cluster identifiability arise as components are made more flexible. Instead of mixture component attribution, we consider clusterings that are functions of the data and the density $f$, which allows us to separate flexible density estimation from clustering. Within this framework, we develop a method to cluster data into connected components of a level set of $f$. Under mild conditions, we establish that our Bayesian level-set (BALLET) clustering methodology yields consistent estimates, and we highlight its performance in a variety of toy and simulated data examples. Finally, through an application to astronomical data we show the method performs favorably relative to the popular level-set clustering algorithm DBSCAN in terms of accuracy, insensitivity to tuning parameters, and quantification of uncertainty.
The physical layer authentication (PLA) is a promising technology which can enhance the access security of a massive number of devices in the near future. In this paper, we propose a reconfigurable intelligent surface (RIS)-assisted PLA system, in which the legitimate transmitter can customize the channel fingerprints during PLA by controlling the ON-OFF state of the RIS. Without loss of generality, we use the received signal strength (RSS) based spoofing detection approach to analyze the feasibility of the proposed architecture. Specifically, based on the RSS, we derive the statistical properties of PLA and give some interesting insights, which showcase that the RIS-assisted PLA is theoretically feasible. Then, we derive the optimal detection threshold to maximize the performance in the context of the presented performance metrics. Next, the actual feasibility of the proposed system is verified via proof-of-concept experiments on a RIS-assisted PLA prototype platform. The experiment results show that there are 3.5% and 76% performance improvements when the transmission sources are at different locations and at the same location, respectively.
Diffusion models, which convert noise into new data instances by learning to reverse a Markov diffusion process, have become a cornerstone in contemporary generative modeling. While their practical power has now been widely recognized, the theoretical underpinnings remain far from mature. In this work, we develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models in discrete time, assuming access to $\ell_2$-accurate estimates of the (Stein) score functions. For a popular deterministic sampler (based on the probability flow ODE), we establish a convergence rate proportional to $1/T$ (with $T$ the total number of steps), improving upon past results; for another mainstream stochastic sampler (i.e., a type of the denoising diffusion probabilistic model), we derive a convergence rate proportional to $1/\sqrt{T}$, matching the state-of-the-art theory. Imposing only minimal assumptions on the target data distribution (e.g., no smoothness assumption is imposed), our results characterize how $\ell_2$ score estimation errors affect the quality of the data generation processes. In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach without resorting to toolboxes for SDEs and ODEs. Further, we design two accelerated variants, improving the convergence to $1/T^2$ for the ODE-based sampler and $1/T$ for the DDPM-type sampler, which might be of independent theoretical and empirical interest.
Foundation models have revolutionized the landscape of Deep Learning (DL), serving as a versatile platform which can be adapted to a wide range of downstream tasks. Despite their adaptability, applications of foundation models to downstream graph-based tasks have been limited, and there remains no convenient way to leverage large-scale non-graph pretrained models in graph-structured settings. In this work, we present a new framework which we term Foundation-Informed Message Passing (FIMP) to bridge the fields of foundational models and GNNs through a simple concept: constructing message-passing operators from pretrained foundation model weights. We show that this approach results in improved performance for graph-based tasks in a number of data domains, allowing graph neural networks to leverage the knowledge of foundation models.
Adversarial attacks on Latent Diffusion Model (LDM), the state-of-the-art image generative model, have been adopted as effective protection against malicious finetuning of LDM on unauthorized images. We show that these attacks add an extra error to the score function of adversarial examples predicted by LDM. LDM finetuned on these adversarial examples learns to lower the error by a bias, from which the model is attacked and predicts the score function with biases. Based on the dynamics, we propose to improve the adversarial attack on LDM by Attacking with Consistent score-function Errors (ACE). ACE unifies the pattern of the extra error added to the predicted score function. This induces the finetuned LDM to learn the same pattern as a bias in predicting the score function. We then introduce a well-crafted pattern to improve the attack. Our method outperforms state-of-the-art methods in adversarial attacks on LDM.
With the explosive growth of information technology, multi-view graph data have become increasingly prevalent and valuable. Most existing multi-view clustering techniques either focus on the scenario of multiple graphs or multi-view attributes. In this paper, we propose a generic framework to cluster multi-view attributed graph data. Specifically, inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method to learn a consensus graph since the original graph could be noisy or incomplete and is not directly applicable. Our method composes of two key steps: we first filter out the undesirable high-frequency noise while preserving the graph geometric features via graph filtering and obtain a smooth representation of nodes; we then learn a consensus graph regularized by graph contrastive loss. Results on several benchmark datasets show the superiority of our method with respect to state-of-the-art approaches. In particular, our simple approach outperforms existing deep learning-based methods.
Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.
Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.