It often happens that free algebras for a given theory satisfy useful reasoning principles that are not preserved under homomorphisms of algebras, and hence need not hold in an arbitrary algebra. For instance, if $M$ is the free monoid on a set $A$, then the scalar multiplication function $A\times M \to M$ is injective. Therefore, when reasoning in the formal theory of monoids under $A$, it is possible to use this injectivity law to make sound deductions even about monoids under $A$ for which scalar multiplication is not injective -- a principle known in algebra as the permanence of identity. Properties of this kind are of fundamental practical importance to the logicians and computer scientists who design and implement computerized proof assistants like Lean and Coq, as they enable the formal reductions of equational problems that make type checking tractable. As type theories have become increasingly more sophisticated, it has become more and more difficult to establish the useful properties of their free models that enable effective implementation. These obstructions have facilitated a fruitful return to foundational work in type theory, which has taken on a more geometrical flavor than ever before. Here we expose a modern way to prove a highly non-trivial injectivity law for free models of Martin-L\"of type theory, paying special attention to the ways that contemporary methods in type theory have been influenced by three important ideas of the Grothendieck school: the relative point of view, the language of universes, and the recollement of generalized spaces.
Although linear and quadratic discriminant analysis are widely recognized classical methods, they can encounter significant challenges when dealing with non-Gaussian distributions or contaminated datasets. This is primarily due to their reliance on the Gaussian assumption, which lacks robustness. We first explain and review the classical methods to address this limitation and then present a novel approach that overcomes these issues. In this new approach, the model considered is an arbitrary Elliptically Symmetrical (ES) distribution per cluster with its own arbitrary scale parameter. This flexible model allows for potentially diverse and independent samples that may not follow identical distributions. By deriving a new decision rule, we demonstrate that maximum-likelihood parameter estimation and classification are simple, efficient, and robust compared to state-of-the-art methods.
Hutchinson's estimator is a randomized algorithm that computes an $\epsilon$-approximation to the trace of any positive semidefinite matrix using $\mathcal{O}(1/\epsilon^2)$ matrix-vector products. An improvement of Hutchinson's estimator, known as Hutch++, only requires $\mathcal{O}(1/\epsilon)$ matrix-vector products. In this paper, we propose a generalization of Hutch++, which we call ContHutch++, that uses operator-function products to efficiently estimate the trace of any trace-class integral operator. Our ContHutch++ estimates avoid spectral artifacts introduced by discretization and are accompanied by rigorous high-probability error bounds. We use ContHutch++ to derive a new high-order accurate algorithm for quantum density-of-states and also show how it can estimate electromagnetic fields induced by incoherent sources.
Approximated forms of the RII and RIII redistribution matrices are frequently applied to simplify the numerical solution of the radiative transfer problem for polarized radiation, taking partial frequency redistribution (PRD) effects into account. A widely used approximation for RIII is to consider its expression under the assumption of complete frequency redistribution (CRD) in the observer frame (RIII CRD). The adequacy of this approximation for modeling the intensity profiles has been firmly established. By contrast, its suitability for modeling scattering polarization signals has only been analyzed in a few studies, considering simplified settings. In this work, we aim at quantitatively assessing the impact and the range of validity of the RIII CRD approximation in the modeling of scattering polarization. Methods. We first present an analytic comparison between RIII and RIII CRD. We then compare the results of radiative transfer calculations, out of local thermodynamic equilibrium, performed with RIII and RIII CRD in realistic 1D atmospheric models. We focus on the chromospheric Ca i line at 4227 A and on the photospheric Sr i line at 4607 A.
Statistical learning methods are widely utilized in tackling complex problems due to their flexibility, good predictive performance and its ability to capture complex relationships among variables. Additionally, recently developed automatic workflows have provided a standardized approach to implementing statistical learning methods across various applications. However these tools highlight a main drawbacks of statistical learning: its lack of interpretation in their results. In the past few years an important amount of research has been focused on methods for interpreting black box models. Having interpretable statistical learning methods is relevant to have a deeper understanding of the model. In problems were spatial information is relevant, combined interpretable methods with spatial data can help to get better understanding of the problem and interpretation of the results. This paper is focused in the individual conditional expectation (ICE-plot), a model agnostic methods for interpreting statistical learning models and combined them with spatial information. ICE-plot extension is proposed where spatial information is used as restriction to define Spatial ICE curves (SpICE). Spatial ICE curves are estimated using real data in the context of an economic problem concerning property valuation in Montevideo, Uruguay. Understanding the key factors that influence property valuation is essential for decision-making, and spatial data plays a relevant role in this regard.
We extend our formulation of Merge and Minimalism in terms of Hopf algebras to an algebraic model of a syntactic-semantic interface. We show that methods adopted in the formulation of renormalization (extraction of meaningful physical values) in theoretical physics are relevant to describe the extraction of meaning from syntactic expressions. We show how this formulation relates to computational models of semantics and we answer some recent controversies about implications for generative linguistics of the current functioning of large language models.
Nowadays, deep-learning image coding solutions have shown similar or better compression efficiency than conventional solutions based on hand-crafted transforms and spatial prediction techniques. These deep-learning codecs require a large training set of images and a training methodology to obtain a suitable model (set of parameters) for efficient compression. The training is performed with an optimization algorithm which provides a way to minimize the loss function. Therefore, the loss function plays a key role in the overall performance and includes a differentiable quality metric that attempts to mimic human perception. The main objective of this paper is to study the perceptual impact of several image quality metrics that can be used in the loss function of the training process, through a crowdsourcing subjective image quality assessment study. From this study, it is possible to conclude that the choice of the quality metric is critical for the perceptual performance of the deep-learning codec and that can vary depending on the image content.
Regev recently introduced a quantum factoring algorithm that may be perceived as a $d$-dimensional variation of Shor's factoring algorithm. In this work, we extend Regev's factoring algorithm to an algorithm for computing discrete logarithms in a natural way. Furthermore, we discuss natural extensions of Regev's factoring algorithm to order finding, and to factoring completely via order finding.
We consider an unknown multivariate function representing a system-such as a complex numerical simulator-taking both deterministic and uncertain inputs. Our objective is to estimate the set of deterministic inputs leading to outputs whose probability (with respect to the distribution of the uncertain inputs) of belonging to a given set is less than a given threshold. This problem, which we call Quantile Set Inversion (QSI), occurs for instance in the context of robust (reliability-based) optimization problems, when looking for the set of solutions that satisfy the constraints with sufficiently large probability. To solve the QSI problem, we propose a Bayesian strategy based on Gaussian process modeling and the Stepwise Uncertainty Reduction (SUR) principle, to sequentially choose the points at which the function should be evaluated to efficiently approximate the set of interest. We illustrate the performance and interest of the proposed SUR strategy through several numerical experiments.
Throughout the life sciences we routinely seek to interpret measurements and observations using parameterised mechanistic mathematical models. A fundamental and often overlooked choice in this approach involves relating the solution of a mathematical model with noisy and incomplete measurement data. This is often achieved by assuming that the data are noisy measurements of the solution of a deterministic mathematical model, and that measurement errors are additive and normally distributed. While this assumption of additive Gaussian noise is extremely common and simple to implement and interpret, it is often unjustified and can lead to poor parameter estimates and non-physical predictions. One way to overcome this challenge is to implement a different measurement error model. In this review, we demonstrate how to implement a range of measurement error models in a likelihood-based framework for estimation, identifiability analysis, and prediction, called Profile-Wise Analysis. This frequentist approach to uncertainty quantification for mechanistic models leverages the profile likelihood for targeting parameters and understanding their influence on predictions. Case studies, motivated by simple caricature models routinely used in systems biology and mathematical biology literature, illustrate how the same ideas apply to different types of mathematical models. Open-source Julia code to reproduce results is available on GitHub.
The development of cubical type theory inspired the idea of "extension types" which has been found to have applications in other type theories that are unrelated to homotopy type theory or cubical type theory. This article describes these applications, including on records, metaprogramming, controlling unfolding, and some more exotic ones.