亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Text generation is a compelling sub-field of natural language processing, aiming to generate human-readable text from input words. In particular, the decoder-only generative models, such as generative pre-trained transformer (GPT), are widely used for text generation, with two major computational stages: summarization and generation. Unlike the summarization stage, which can process the input tokens in parallel, the generation stage is difficult to accelerate due to its sequential generation of output tokens through iteration. Moreover, each iteration requires reading a whole model with little data reuse opportunity. Therefore, the workload of transformer-based text generation is severely memory-bound, making the external memory bandwidth system bottleneck. In this paper, we proposed a subarray-level processing-in-memory architecture named SAL-PIM, HBM-based PIM architecture for the end-to-end acceleration of transformer-based text generation. The SAL-PIM architecture includes three architectural features. First, the SAL-PIM architecture utilizes higher internal bandwidth by integrating multiple subarray-level arithmetic logic units with optimized data mapping schemes. Second, the SAL-PIM architecture adopts LUT-based linear interpolation to perform complex non-linear functions in PIM. Third, the SAL-PIM architecture accelerates end-to-end inference on PIM in text generation. Furthermore, to validate the SAL-PIM architecture, we built cycle-accurate simulator and implemented the SAL-PIM's logic units in 28-nm CMOS technology. As a result, when the input size is from 32 to 128 and the output size is from 1 to 256, SAL-PIM achieves a maximum of 4.72 times speedup and an average of 1.83 times speedup for the text generation based on the GPT-2 medium model compared to the server-level GPU.

相關內容

Symbols (or more broadly, non-natural language textual representations) such as numerical sequences, molecular formulas, and table delimiters widely exist, playing important roles in various tasks such as abstract reasoning, chemical property prediction, and table question answering. Despite the impressive natural language comprehension capabilities of large language models (LLMs), their reasoning abilities for symbols remain inadequate, which could attributed to the difference between symbol representations and general natural languages. We propose symbol-to-language (S2L), a tuning-free method that enables large language models to solve symbol-related problems with information expressed in natural language. Specifically, S2L first converts the symbols involved to language-based representations, which can be implemented by prompting LLMs or leveraging external tools, then these language-based representations are integrated into the original problem via direct substitution or concatenation, serving as useful input information for LLMs. We evaluate the S2L method using both API-based (GPT-4, ChatGPT) and open-source (OpenChat) models over eight symbol-related tasks, ranging from symbol-only abstract reasoning to sentiment analysis in social media. Experimental results show that S2L consistently leads to superior performance. For example, by employing S2L for GPT-4, there can be average significant improvements of +21.9% and +9.5% for subtasks in 1D-ARC and Dyck language, respectively. Codes and data are available at //github.com/THUNLP-MT/symbol2language.

The objective of personalization and stylization in text-to-image is to instruct a pre-trained diffusion model to analyze new concepts introduced by users and incorporate them into expected styles. Recently, parameter-efficient fine-tuning (PEFT) approaches have been widely adopted to address this task and have greatly propelled the development of this field. Despite their popularity, existing efficient fine-tuning methods still struggle to achieve effective personalization and stylization in T2I generation. To address this issue, we propose block-wise Low-Rank Adaptation (LoRA) to perform fine-grained fine-tuning for different blocks of SD, which can generate images faithful to input prompts and target identity and also with desired style. Extensive experiments demonstrate the effectiveness of the proposed method.

Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere. Despite this success, these models can learn, perpetuate, and amplify harmful social biases. In this paper, we present a comprehensive survey of bias evaluation and mitigation techniques for LLMs. We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing, defining distinct facets of harm and introducing several desiderata to operationalize fairness for LLMs. We then unify the literature by proposing three intuitive taxonomies, two for bias evaluation, namely metrics and datasets, and one for mitigation. Our first taxonomy of metrics for bias evaluation disambiguates the relationship between metrics and evaluation datasets, and organizes metrics by the different levels at which they operate in a model: embeddings, probabilities, and generated text. Our second taxonomy of datasets for bias evaluation categorizes datasets by their structure as counterfactual inputs or prompts, and identifies the targeted harms and social groups; we also release a consolidation of publicly-available datasets for improved access. Our third taxonomy of techniques for bias mitigation classifies methods by their intervention during pre-processing, in-training, intra-processing, and post-processing, with granular subcategories that elucidate research trends. Finally, we identify open problems and challenges for future work. Synthesizing a wide range of recent research, we aim to provide a clear guide of the existing literature that empowers researchers and practitioners to better understand and prevent the propagation of bias in LLMs.

Reinforcement Learning (RL) has increasingly become a preferred method over traditional rule-based systems in diverse human-in-the-loop (HITL) applications due to its adaptability to the dynamic nature of human interactions. However, integrating RL in such settings raises significant privacy concerns, as it might inadvertently expose sensitive user information. Addressing this, our paper focuses on developing PAPER-HILT, an innovative, adaptive RL strategy through exploiting an early-exit approach designed explicitly for privacy preservation in HITL environments. This approach dynamically adjusts the tradeoff between privacy protection and system utility, tailoring its operation to individual behavioral patterns and preferences. We mainly highlight the challenge of dealing with the variable and evolving nature of human behavior, which renders static privacy models ineffective. PAPER-HILT's effectiveness is evaluated through its application in two distinct contexts: Smart Home environments and Virtual Reality (VR) Smart Classrooms. The empirical results demonstrate PAPER-HILT's capability to provide a personalized equilibrium between user privacy and application utility, adapting effectively to individual user needs and preferences. On average for both experiments, utility (performance) drops by 24%, and privacy (state prediction) improves by 31%.

Class-incremental learning (CIL) is a particularly challenging variant of continual learning, where the goal is to learn to discriminate between all classes presented in an incremental fashion. Existing approaches often suffer from excessive forgetting and imbalance of the scores assigned to classes that have not been seen together during training. In this study, we introduce a novel approach, Prediction Error-based Classification (PEC), which differs from traditional discriminative and generative classification paradigms. PEC computes a class score by measuring the prediction error of a model trained to replicate the outputs of a frozen random neural network on data from that class. The method can be interpreted as approximating a classification rule based on Gaussian Process posterior variance. PEC offers several practical advantages, including sample efficiency, ease of tuning, and effectiveness even when data are presented one class at a time. Our empirical results show that PEC performs strongly in single-pass-through-data CIL, outperforming other rehearsal-free baselines in all cases and rehearsal-based methods with moderate replay buffer size in most cases across multiple benchmarks.

Large language models (LLMs) have achieved unprecedented performance in various applications, yet their evaluation remains a critical issue. Existing hallucination benchmarks are either static or lack adjustable complexity for thorough analysis. We contend that utilizing existing relational databases is a promising approach for constructing benchmarks due to their accurate knowledge description via functional dependencies. We propose ERBench to automatically convert any relational database into a benchmark based on the entity-relationship (ER) model. Our key idea is to construct questions using the database schema, records, and functional dependencies such that they can be automatically verified. In addition, we use foreign key constraints to join relations and construct multihop questions, which can be arbitrarily complex and used to debug the intermediate answers of LLMs. Finally, ERBench supports continuous evaluation, multimodal questions, and various prompt engineering techniques. In our experiments, we construct an LLM benchmark using databases of multiple domains and make an extensive comparison of contemporary LLMs. We observe that better LLMs like GPT-4 can handle a larger variety of question types, but are by no means perfect. Also, correct answers do not necessarily imply correct rationales, which is an important evaluation that ERBench does better than other benchmarks for various question types. Code is available at https: //github.com/DILAB-KAIST/ERBench.

The generation of natural and high-quality speech from text is a challenging problem in the field of natural language processing. In addition to speech generation, speech editing is also a crucial task, which requires the seamless and unnoticeable integration of edited speech into synthesized speech. We propose a novel approach to speech editing by leveraging a pre-trained text-to-speech (TTS) model, such as FastSpeech 2, and incorporating a double attention block network on top of it to automatically merge the synthesized mel-spectrogram with the mel-spectrogram of the edited text. We refer to this model as AttentionStitch, as it harnesses attention to stitch audio samples together. We evaluate the proposed AttentionStitch model against state-of-the-art baselines on both single and multi-speaker datasets, namely LJSpeech and VCTK. We demonstrate its superior performance through an objective and a subjective evaluation test involving 15 human participants. AttentionStitch is capable of producing high-quality speech, even for words not seen during training, while operating automatically without the need for human intervention. Moreover, AttentionStitch is fast during both training and inference and is able to generate human-sounding edited speech.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Transformer-based pretrained language models (T-PTLMs) have achieved great success in almost every NLP task. The evolution of these models started with GPT and BERT. These models are built on the top of transformers, self-supervised learning and transfer learning. Transformed-based PTLMs learn universal language representations from large volumes of text data using self-supervised learning and transfer this knowledge to downstream tasks. These models provide good background knowledge to downstream tasks which avoids training of downstream models from scratch. In this comprehensive survey paper, we initially give a brief overview of self-supervised learning. Next, we explain various core concepts like pretraining, pretraining methods, pretraining tasks, embeddings and downstream adaptation methods. Next, we present a new taxonomy of T-PTLMs and then give brief overview of various benchmarks including both intrinsic and extrinsic. We present a summary of various useful libraries to work with T-PTLMs. Finally, we highlight some of the future research directions which will further improve these models. We strongly believe that this comprehensive survey paper will serve as a good reference to learn the core concepts as well as to stay updated with the recent happenings in T-PTLMs.

Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure. Though important, structure modeling usually requires significant manual annotations and therefore is labor-intensive. In this paper, we propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions into the traditional framework. We show the recognition backbone can be substantially enhanced for more robust representation learning, without any cost of extra annotation and inference speed. Specifically, we first propose an object-extent learning module for localizing the object according to the visual patterns shared among the instances in the same category. We then design a spatial context learning module for modeling the internal structures of the object, through predicting the relative positions within the extent. These two modules can be easily plugged into any backbone networks during training and detached at inference time. Extensive experiments show that our look-into-object approach (LIO) achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft). We also show that this learning paradigm is highly generalizable to other tasks such as object detection and segmentation (MS COCO). Project page: //github.com/JDAI-CV/LIO.

北京阿比特科技有限公司