Deep learning for tabular data has garnered increasing attention in recent years, yet employing deep models for structured data remains challenging. While these models excel with unstructured data, their efficacy with structured data has been limited. Recent research has introduced retrieval-augmented models to address this gap, demonstrating promising results in supervised tasks such as classification and regression. In this work, we investigate using retrieval-augmented models for anomaly detection on tabular data. We propose a reconstruction-based approach in which a transformer model learns to reconstruct masked features of \textit{normal} samples. We test the effectiveness of KNN-based and attention-based modules to select relevant samples to help in the reconstruction process of the target sample. Our experiments on a benchmark of 31 tabular datasets reveal that augmenting this reconstruction-based anomaly detection (AD) method with non-parametric relationships via retrieval modules may significantly boost performance.
Large-scale datasets are important for the development of deep learning models. Such datasets usually require a heavy workload of annotations, which are extremely time-consuming and expensive. To accelerate the annotation procedure, multiple annotators may be employed to label different subsets of the data. However, the inconsistency and bias among different annotators are harmful to the model training, especially for qualitative and subjective tasks.To address this challenge, in this paper, we propose a novel contrastive regression framework to address the disjoint annotations problem, where each sample is labeled by only one annotator and multiple annotators work on disjoint subsets of the data. To take account of both the intra-annotator consistency and inter-annotator inconsistency, two strategies are employed.Firstly, a contrastive-based loss is applied to learn the relative ranking among different samples of the same annotator, with the assumption that the ranking of samples from the same annotator is unanimous. Secondly, we apply the gradient reversal layer to learn robust representations that are invariant to different annotators. Experiments on the facial expression prediction task, as well as the image quality assessment task, verify the effectiveness of our proposed framework.
Large language model (LLM) has achieved promising performance in multilingual machine translation tasks through zero/few-shot prompts or prompt-tuning. However, due to the mixture of multilingual data during the pre-training of LLM, the LLM-based translation models face the off-target issue in both prompt-based methods, including a series of phenomena, namely instruction misunderstanding, translation with wrong language and over-generation. For this issue, this paper introduces an \textbf{\underline{A}}uto-\textbf{\underline{C}}onstriction \textbf{\underline{T}}urning mechanism for \textbf{\underline{M}}ultilingual \textbf{\underline{N}}eural \textbf{\underline{M}}achine \textbf{\underline{T}}ranslation (\model), which is a novel supervised fine-tuning mechanism and orthogonal to the traditional prompt-based methods. In this method, \model automatically constructs a constrained template in the target side by adding trigger tokens ahead of the ground truth. Furthermore, trigger tokens can be arranged and combined freely to represent different task semantics, and they can be iteratively updated to maximize the label likelihood. Experiments are performed on WMT test sets with multiple metrics, and the experimental results demonstrate that \model achieves substantially improved performance across multiple translation directions and reduce the off-target phenomena in the translation.
Neural radiance fields (NeRFs) have achieved impressive view synthesis results by learning an implicit volumetric representation from multi-view images. To project the implicit representation into an image, NeRF employs volume rendering that approximates the continuous integrals of rays as an accumulation of the colors and densities of the sampled points. Although this approximation enables efficient rendering, it ignores the direction information in point intervals, resulting in ambiguous features and limited reconstruction quality. In this paper, we propose an anisotropic neural representation learning method that utilizes learnable view-dependent features to improve scene representation and reconstruction. We model the volumetric function as spherical harmonic (SH)-guided anisotropic features, parameterized by multilayer perceptrons, facilitating ambiguity elimination while preserving the rendering efficiency. To achieve robust scene reconstruction without anisotropy overfitting, we regularize the energy of the anisotropic features during training. Our method is flexiable and can be plugged into NeRF-based frameworks. Extensive experiments show that the proposed representation can boost the rendering quality of various NeRFs and achieve state-of-the-art rendering performance on both synthetic and real-world scenes.
Recent advances in deep learning have enabled us to address the curse of dimensionality (COD) by solving problems in higher dimensions. A subset of such approaches of addressing the COD has led us to solving high-dimensional PDEs. This has resulted in opening doors to solving a variety of real-world problems ranging from mathematical finance to stochastic control for industrial applications. Although feasible, these deep learning methods are still constrained by training time and memory. Tackling these shortcomings, Tensor Neural Networks (TNN) demonstrate that they can provide significant parameter savings while attaining the same accuracy as compared to the classical Dense Neural Network (DNN). In addition, we also show how TNN can be trained faster than DNN for the same accuracy. Besides TNN, we also introduce Tensor Network Initializer (TNN Init), a weight initialization scheme that leads to faster convergence with smaller variance for an equivalent parameter count as compared to a DNN. We benchmark TNN and TNN Init by applying them to solve the parabolic PDE associated with the Heston model, which is widely used in financial pricing theory.
Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.
Geometric deep learning (GDL), which is based on neural network architectures that incorporate and process symmetry information, has emerged as a recent paradigm in artificial intelligence. GDL bears particular promise in molecular modeling applications, in which various molecular representations with different symmetry properties and levels of abstraction exist. This review provides a structured and harmonized overview of molecular GDL, highlighting its applications in drug discovery, chemical synthesis prediction, and quantum chemistry. Emphasis is placed on the relevance of the learned molecular features and their complementarity to well-established molecular descriptors. This review provides an overview of current challenges and opportunities, and presents a forecast of the future of GDL for molecular sciences.
Current models for event causality identification (ECI) mainly adopt a supervised framework, which heavily rely on labeled data for training. Unfortunately, the scale of current annotated datasets is relatively limited, which cannot provide sufficient support for models to capture useful indicators from causal statements, especially for handing those new, unseen cases. To alleviate this problem, we propose a novel approach, shortly named CauSeRL, which leverages external causal statements for event causality identification. First of all, we design a self-supervised framework to learn context-specific causal patterns from external causal statements. Then, we adopt a contrastive transfer strategy to incorporate the learned context-specific causal patterns into the target ECI model. Experimental results show that our method significantly outperforms previous methods on EventStoryLine and Causal-TimeBank (+2.0 and +3.4 points on F1 value respectively).
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into different categories. With a focus on graph convolutional networks, we review alternative architectures that have recently been developed; these learning paradigms include graph attention networks, graph autoencoders, graph generative networks, and graph spatial-temporal networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes and benchmarks of the existing algorithms on different learning tasks. Finally, we propose potential research directions in this fast-growing field.
As a new classification platform, deep learning has recently received increasing attention from researchers and has been successfully applied to many domains. In some domains, like bioinformatics and robotics, it is very difficult to construct a large-scale well-annotated dataset due to the expense of data acquisition and costly annotation, which limits its development. Transfer learning relaxes the hypothesis that the training data must be independent and identically distributed (i.i.d.) with the test data, which motivates us to use transfer learning to solve the problem of insufficient training data. This survey focuses on reviewing the current researches of transfer learning by using deep neural network and its applications. We defined deep transfer learning, category and review the recent research works based on the techniques used in deep transfer learning.
Deep learning has yielded state-of-the-art performance on many natural language processing tasks including named entity recognition (NER). However, this typically requires large amounts of labeled data. In this work, we demonstrate that the amount of labeled training data can be drastically reduced when deep learning is combined with active learning. While active learning is sample-efficient, it can be computationally expensive since it requires iterative retraining. To speed this up, we introduce a lightweight architecture for NER, viz., the CNN-CNN-LSTM model consisting of convolutional character and word encoders and a long short term memory (LSTM) tag decoder. The model achieves nearly state-of-the-art performance on standard datasets for the task while being computationally much more efficient than best performing models. We carry out incremental active learning, during the training process, and are able to nearly match state-of-the-art performance with just 25\% of the original training data.