亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Robotic Process Automation (RPA) has gained widespread adoption in corporate organizations, streamlining work processes while also introducing additional maintenance tasks. Effective governance of RPA can be achieved through the reusability of RPA components. However, refactoring RPA processes poses challenges when dealing with larger development teams, outsourcing, and staff turnover. This research aims to explore the possibility of identifying similarities in RPA processes for refactoring. To address this issue, we have developed Similarity Discovering Techniques for RPA (SiDiTeR). SiDiTeR utilizes source code or process logs from RPAautomations to search for similar or identical parts within RPA processes. The techniques introduced are specifically tailored to the RPA domain. We have expanded the potential matches by introducing a dictionary feature which helps identify different activities that produce the same output, and this has led to improved results in the RPA domain. Through our analysis, we have discovered 655 matches across 156 processes, with the longest match spanning 163 occurrences in 15 processes. Process similarity within the RPA domain proves to be a viable solution for mitigating the maintenance burden associated with RPA. This underscores the significance of process similarity in the RPA domain.

相關內容

Feature attribution methods (FAs), such as gradients and attention, are widely employed approaches to derive the importance of all input features to the model predictions. Existing work in natural language processing has mostly focused on developing and testing FAs for encoder-only language models (LMs) in classification tasks. However, it is unknown if it is faithful to use these FAs for decoder-only models on text generation, due to the inherent differences between model architectures and task settings respectively. Moreover, previous work has demonstrated that there is no `one-wins-all' FA across models and tasks. This makes the selection of a FA computationally expensive for large LMs since input importance derivation often requires multiple forward and backward passes including gradient computations that might be prohibitive even with access to large compute. To address these issues, we present a model-agnostic FA for generative LMs called Recursive Attribution Generator (ReAGent). Our method updates the token importance distribution in a recursive manner. For each update, we compute the difference in the probability distribution over the vocabulary for predicting the next token between using the original input and using a modified version where a part of the input is replaced with RoBERTa predictions. Our intuition is that replacing an important token in the context should have resulted in a larger change in the model's confidence in predicting the token than replacing an unimportant token. Our method can be universally applied to any generative LM without accessing internal model weights or additional training and fine-tuning, as most other FAs require. We extensively compare the faithfulness of ReAGent with seven popular FAs across six decoder-only LMs of various sizes. The results show that our method consistently provides more faithful token importance distributions.

In recent years, more people have seen their work depend on data manipulation tasks. However, many of these users do not have the background in programming required to write complex programs, particularly SQL queries. One way of helping these users is automatically synthesizing the SQL query given a small set of examples. Several program synthesizers for SQL have been recently proposed, but they do not leverage multicore architectures. This paper proposes CUBES, a parallel program synthesizer for the domain of SQL queries using input-output examples. Since input-output examples are an under-specification of the desired SQL query, sometimes, the synthesized query does not match the user's intent. CUBES incorporates a new disambiguation procedure based on fuzzing techniques that interacts with the user and increases the confidence that the returned query matches the user intent. We perform an extensive evaluation on around 4000 SQL queries from different domains. Experimental results show that our sequential version can solve more instances than other state-of-the-art SQL synthesizers. Moreover, the parallel approach can scale up to 16 processes with super-linear speedups for many hard instances. Our disambiguation approach is critical to achieving an accuracy of around 60%, significantly larger than other SQL synthesizers.

Decision Transformer (DT), which employs expressive sequence modeling techniques to perform action generation, has emerged as a promising approach to offline policy optimization. However, DT generates actions conditioned on a desired future return, which is known to bear some weaknesses such as the susceptibility to environmental stochasticity. To overcome DT's weaknesses, we propose to empower DT with dynamic programming. Our method comprises three steps. First, we employ in-sample value iteration to obtain approximated value functions, which involves dynamic programming over the MDP structure. Second, we evaluate action quality in context with estimated advantages. We introduce two types of advantage estimators, IAE and GAE, which are suitable for different tasks. Third, we train an Advantage-Conditioned Transformer (ACT) to generate actions conditioned on the estimated advantages. Finally, during testing, ACT generates actions conditioned on a desired advantage. Our evaluation results validate that, by leveraging the power of dynamic programming, ACT demonstrates effective trajectory stitching and robust action generation in spite of the environmental stochasticity, outperforming baseline methods across various benchmarks. Additionally, we conduct an in-depth analysis of ACT's various design choices through ablation studies. Our code is available at //github.com/LAMDA-RL/ACT.

While there has been significant development of models for Plain Language Summarization (PLS), evaluation remains a challenge. PLS lacks a dedicated assessment metric, and the suitability of text generation evaluation metrics is unclear due to the unique transformations involved (e.g., adding background explanations, removing specialized terminology). To address these concerns, our study presents a granular meta-evaluation testbed, APPLS, designed to evaluate metrics for PLS. We define a set of perturbations along four criteria inspired by previous work that a PLS metric should capture: informativeness, simplification, coherence, and faithfulness. An analysis of metrics using our testbed reveals that current metrics fail to capture simplification consistently. In response, we introduce POMME, a new metric designed to assess text simplification in PLS; the metric is calculated as the normalized perplexity difference between an in-domain and out-of-domain language model. We demonstrate POMME's correlation with fine-grained variations in simplification and validate its sensitivity across 4 text simplification datasets. This work contributes the first meta-evaluation testbed for PLS and a comprehensive evaluation of existing metrics. The APPLS testbed and POMME is available at //github.com/LinguisticAnomalies/APPLS.

Extensive fine-tuning on Large Language Models does not always yield better results. Oftentimes, models tend to get better at imitating one form of data without gaining greater reasoning ability and may even end up losing some intelligence. Here I introduce EvoMerge, a systematic approach to large language model training and merging. Leveraging model merging for weight crossover and fine-tuning for weight mutation, EvoMerge establishes an evolutionary process aimed at pushing models beyond the limits of conventional fine-tuning.

Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

With the capability of modeling bidirectional contexts, denoising autoencoding based pretraining like BERT achieves better performance than pretraining approaches based on autoregressive language modeling. However, relying on corrupting the input with masks, BERT neglects dependency between the masked positions and suffers from a pretrain-finetune discrepancy. In light of these pros and cons, we propose XLNet, a generalized autoregressive pretraining method that (1) enables learning bidirectional contexts by maximizing the expected likelihood over all permutations of the factorization order and (2) overcomes the limitations of BERT thanks to its autoregressive formulation. Furthermore, XLNet integrates ideas from Transformer-XL, the state-of-the-art autoregressive model, into pretraining. Empirically, XLNet outperforms BERT on 20 tasks, often by a large margin, and achieves state-of-the-art results on 18 tasks including question answering, natural language inference, sentiment analysis, and document ranking.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

ASR (automatic speech recognition) systems like Siri, Alexa, Google Voice or Cortana has become quite popular recently. One of the key techniques enabling the practical use of such systems in people's daily life is deep learning. Though deep learning in computer vision is known to be vulnerable to adversarial perturbations, little is known whether such perturbations are still valid on the practical speech recognition. In this paper, we not only demonstrate such attacks can happen in reality, but also show that the attacks can be systematically conducted. To minimize users' attention, we choose to embed the voice commands into a song, called CommandSong. In this way, the song carrying the command can spread through radio, TV or even any media player installed in the portable devices like smartphones, potentially impacting millions of users in long distance. In particular, we overcome two major challenges: minimizing the revision of a song in the process of embedding commands, and letting the CommandSong spread through the air without losing the voice "command". Our evaluation demonstrates that we can craft random songs to "carry" any commands and the modify is extremely difficult to be noticed. Specially, the physical attack that we play the CommandSongs over the air and record them can success with 94 percentage.

Convolutional Neural Networks (CNNs) have gained significant traction in the field of machine learning, particularly due to their high accuracy in visual recognition. Recent works have pushed the performance of GPU implementations of CNNs to significantly improve their classification and training times. With these improvements, many frameworks have become available for implementing CNNs on both CPUs and GPUs, with no support for FPGA implementations. In this work we present a modified version of the popular CNN framework Caffe, with FPGA support. This allows for classification using CNN models and specialized FPGA implementations with the flexibility of reprogramming the device when necessary, seamless memory transactions between host and device, simple-to-use test benches, and the ability to create pipelined layer implementations. To validate the framework, we use the Xilinx SDAccel environment to implement an FPGA-based Winograd convolution engine and show that the FPGA layer can be used alongside other layers running on a host processor to run several popular CNNs (AlexNet, GoogleNet, VGG A, Overfeat). The results show that our framework achieves 50 GFLOPS across 3x3 convolutions in the benchmarks. This is achieved within a practical framework, which will aid in future development of FPGA-based CNNs.

北京阿比特科技有限公司