亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deepfakes are computationally-created entities that falsely represent reality. They can take image, video, and audio modalities, and pose a threat to many areas of systems and societies, comprising a topic of interest to various aspects of cybersecurity and cybersafety. In 2020 a workshop consulting AI experts from academia, policing, government, the private sector, and state security agencies ranked deepfakes as the most serious AI threat. These experts noted that since fake material can propagate through many uncontrolled routes, changes in citizen behaviour may be the only effective defence. This study aims to assess human ability to identify image deepfakes of human faces (StyleGAN2:FFHQ) from nondeepfake images (FFHQ), and to assess the effectiveness of simple interventions intended to improve detection accuracy. Using an online survey, 280 participants were randomly allocated to one of four groups: a control group, and 3 assistance interventions. Each participant was shown a sequence of 20 images randomly selected from a pool of 50 deepfake and 50 real images of human faces. Participants were asked if each image was AI-generated or not, to report their confidence, and to describe the reasoning behind each response. Overall detection accuracy was only just above chance and none of the interventions significantly improved this. Participants' confidence in their answers was high and unrelated to accuracy. Assessing the results on a per-image basis reveals participants consistently found certain images harder to label correctly, but reported similarly high confidence regardless of the image. Thus, although participant accuracy was 62% overall, this accuracy across images ranged quite evenly between 85% and 30%, with an accuracy of below 50% for one in every five images. We interpret the findings as suggesting that there is a need for an urgent call to action to address this threat.

相關內容

With the rapid development of deep generative models (such as Generative Adversarial Networks and Auto-encoders), AI-synthesized images of the human face are now of such high quality that humans can hardly distinguish them from pristine ones. Although existing detection methods have shown high performance in specific evaluation settings, e.g., on images from seen models or on images without real-world post-processings, they tend to suffer serious performance degradation in real-world scenarios where testing images can be generated by more powerful generation models or combined with various post-processing operations. To address this issue, we propose a Global and Local Feature Fusion (GLFF) to learn rich and discriminative representations by combining multi-scale global features from the whole image with refined local features from informative patches for face forgery detection. GLFF fuses information from two branches: the global branch to extract multi-scale semantic features and the local branch to select informative patches for detailed local artifacts extraction. Due to the lack of a face forgery dataset simulating real-world applications for evaluation, we further create a challenging face forgery dataset, named DeepFakeFaceForensics (DF^3), which contains 6 state-of-the-art generation models and a variety of post-processing techniques to approach the real-world scenarios. Experimental results demonstrate the superiority of our method to the state-of-the-art methods on the proposed DF^3 dataset and three other open-source datasets.

Supervised machine learning utilizes large datasets, often with ground truth labels annotated by humans. While some data points are easy to classify, others are hard to classify, which reduces the inter-annotator agreement. This causes noise for the classifier and might affect the user's perception of the classifier's performance. In our research, we investigated whether the classification difficulty of a data point influences how strongly a prediction mistake reduces the "perceived accuracy". In an experimental online study, 225 participants interacted with three fictive classifiers with equal accuracy (73%). The classifiers made prediction mistakes on three different types of data points (easy, difficult, impossible). After the interaction, participants judged the classifier's accuracy. We found that not all prediction mistakes reduced the perceived accuracy equally. Furthermore, the perceived accuracy differed significantly from the calculated accuracy. To conclude, accuracy and related measures seem unsuitable to represent how users perceive the performance of classifiers.

Attackers may attempt exploiting Internet of Things (IoT) devices to operate them unduly as well as to gather personal data of the legitimate device owners'. Vulnerability Assessment and Penetration Testing (VAPT) sessions help to verify the effectiveness of the adopted security measures. However, VAPT over IoT devices, namely VAPT targeted at IoT devices, is an open research challenge due to the variety of target technologies and to the creativity it may require. Therefore, this article aims at guiding penetration testers to conduct VAPT sessions over IoT devices by means of a new cyber Kill Chain (KC) termed PETIoT. Several practical applications of PETIoT confirm that it is general, while its main novelty lies in the combination of attack and defence steps. PETIoT is demonstrated on a relevant example, the best-selling IP camera on Amazon Italy, the TAPO C200 by TP-Link, assuming an attacker who sits on the same network as the device's in order to assess all the network interfaces of the device. Additional knowledge is generated in terms of three zero-day vulnerabilities found and practically exploited on the camera, one of these with High severity and the other two with Medium severity by the CVSS standard. These are camera Denial of Service (DoS), motion detection breach and video stream breach. The application of PETIoT culminates with the proof-of-concept of a home-made fix, based on an inexpensive Raspberry Pi 4 Model B device, for the last vulnerability. Ultimately, our responsible disclosure with the camera vendor led to the release of a firmware update that fixes all found vulnerabilities, confirming that PetIoT has valid impact in real-world scenarios.

Proponents of explainable AI have often argued that it constitutes an essential path towards algorithmic fairness. Prior works examining these claims have primarily evaluated explanations based on their effects on humans' perceptions, but there is scant research on the relationship between explanations and distributive fairness of AI-assisted decisions. In this paper, we conduct an empirical study to examine the relationship between feature-based explanations and distributive fairness, mediated by human perceptions and reliance on AI recommendations. Our findings show that explanations influence fairness perceptions, which, in turn, relate to humans' tendency to adhere to AI recommendations. However, our findings suggest that such explanations do not enable humans to discern correct and wrong AI recommendations. Instead, we show that they may affect reliance irrespective of the correctness of AI recommendations. Depending on which features an explanation highlights, this can foster or hinder distributive fairness: when explanations highlight features that are task-irrelevant and evidently associated with the sensitive attribute, this prompts overrides that counter stereotype-aligned AI recommendations. Meanwhile, if explanations appear task-relevant, this induces reliance behavior that reinforces stereotype-aligned errors. These results show that feature-based explanations are not a reliable mechanism to improve distributive fairness, as their ability to do so relies on a human-in-the-loop operationalization of the flawed notion of "fairness through unawareness". Finally, our study design provides a blueprint to evaluate the suitability of other explanations as pathways towards improved distributive fairness of AI-assisted decisions.

The rise of Artificial Intelligence (AI) technology and its impact on education has been a topic of growing concern in recent years. The new generation AI systems such as chatbots have become more accessible on the Internet and stronger in terms of capabilities. The use of chatbots, particularly ChatGPT, for generating academic essays at schools and colleges has sparked fears among scholars. This study aims to explore the originality of contents produced by one of the most popular AI chatbots, ChatGPT. To this end, two popular plagiarism detection tools were used to evaluate the originality of 50 essays generated by ChatGPT on various topics. Our results manifest that ChatGPT has a great potential to generate sophisticated text outputs without being well caught by the plagiarism check software. In other words, ChatGPT can create content on many topics with high originality as if they were written by someone. These findings align with the recent concerns about students using chatbots for an easy shortcut to success with minimal or no effort. Moreover, ChatGPT was asked to verify if the essays were generated by itself, as an additional measure of plagiarism check, and it showed superior performance compared to the traditional plagiarism-detection tools. The paper discusses the need for institutions to consider appropriate measures to mitigate potential plagiarism issues and advise on the ongoing debate surrounding the impact of AI technology on education. Further implications are discussed in the paper.

Object detection is a fundamental task in computer vision and image processing. Current deep learning based object detectors have been highly successful with abundant labeled data. But in real life, it is not guaranteed that each object category has enough labeled samples for training. These large object detectors are easy to overfit when the training data is limited. Therefore, it is necessary to introduce few-shot learning and zero-shot learning into object detection, which can be named low-shot object detection together. Low-Shot Object Detection (LSOD) aims to detect objects from a few or even zero labeled data, which can be categorized into few-shot object detection (FSOD) and zero-shot object detection (ZSD), respectively. This paper conducts a comprehensive survey for deep learning based FSOD and ZSD. First, this survey classifies methods for FSOD and ZSD into different categories and discusses the pros and cons of them. Second, this survey reviews dataset settings and evaluation metrics for FSOD and ZSD, then analyzes the performance of different methods on these benchmarks. Finally, this survey discusses future challenges and promising directions for FSOD and ZSD.

Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.

Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.

Benefit from the quick development of deep learning techniques, salient object detection has achieved remarkable progresses recently. However, there still exists following two major challenges that hinder its application in embedded devices, low resolution output and heavy model weight. To this end, this paper presents an accurate yet compact deep network for efficient salient object detection. More specifically, given a coarse saliency prediction in the deepest layer, we first employ residual learning to learn side-output residual features for saliency refinement, which can be achieved with very limited convolutional parameters while keep accuracy. Secondly, we further propose reverse attention to guide such side-output residual learning in a top-down manner. By erasing the current predicted salient regions from side-output features, the network can eventually explore the missing object parts and details which results in high resolution and accuracy. Experiments on six benchmark datasets demonstrate that the proposed approach compares favorably against state-of-the-art methods, and with advantages in terms of simplicity, efficiency (45 FPS) and model size (81 MB).

It is a common paradigm in object detection frameworks to treat all samples equally and target at maximizing the performance on average. In this work, we revisit this paradigm through a careful study on how different samples contribute to the overall performance measured in terms of mAP. Our study suggests that the samples in each mini-batch are neither independent nor equally important, and therefore a better classifier on average does not necessarily mean higher mAP. Motivated by this study, we propose the notion of Prime Samples, those that play a key role in driving the detection performance. We further develop a simple yet effective sampling and learning strategy called PrIme Sample Attention (PISA) that directs the focus of the training process towards such samples. Our experiments demonstrate that it is often more effective to focus on prime samples than hard samples when training a detector. Particularly, On the MSCOCO dataset, PISA outperforms the random sampling baseline and hard mining schemes, e.g. OHEM and Focal Loss, consistently by more than 1% on both single-stage and two-stage detectors, with a strong backbone ResNeXt-101.

北京阿比特科技有限公司