Despite superior performance on many computer vision tasks, deep convolution neural networks are well known to be compressed on devices that have resource constraints. Most existing network pruning methods require laborious human efforts and prohibitive computation resources, especially when the constraints are changed. This practically limits the application of model compression when the model needs to be deployed on a wide range of devices. Besides, existing methods are still challenged by the missing theoretical guidance. In this paper we propose an information theory-inspired strategy for automatic model compression. The principle behind our method is the information bottleneck theory, i.e., the hidden representation should compress information with each other. We thus introduce the normalized Hilbert-Schmidt Independence Criterion (nHSIC) on network activations as a stable and generalized indicator of layer importance. When a certain resource constraint is given, we integrate the HSIC indicator with the constraint to transform the architecture search problem into a linear programming problem with quadratic constraints. Such a problem is easily solved by a convex optimization method with a few seconds. We also provide a rigorous proof to reveal that optimizing the normalized HSIC simultaneously minimizes the mutual information between different layers. Without any search process, our method achieves better compression tradeoffs comparing to the state-of-the-art compression algorithms. For instance, with ResNet-50, we achieve a 45.3%-FLOPs reduction, with a 75.75 top-1 accuracy on ImageNet. Codes are avaliable at //github.com/MAC-AutoML/ITPruner/tree/master.
For practical deep neural network design on mobile devices, it is essential to consider the constraints incurred by the computational resources and the inference latency in various applications. Among deep network acceleration related approaches, pruning is a widely adopted practice to balance the computational resource consumption and the accuracy, where unimportant connections can be removed either channel-wisely or randomly with a minimal impact on model accuracy. The channel pruning instantly results in a significant latency reduction, while the random weight pruning is more flexible to balance the latency and accuracy. In this paper, we present a unified framework with Joint Channel pruning and Weight pruning (JCW), and achieves a better Pareto-frontier between the latency and accuracy than previous model compression approaches. To fully optimize the trade-off between the latency and accuracy, we develop a tailored multi-objective evolutionary algorithm in the JCW framework, which enables one single search to obtain the optimal candidate architectures for various deployment requirements. Extensive experiments demonstrate that the JCW achieves a better trade-off between the latency and accuracy against various state-of-the-art pruning methods on the ImageNet classification dataset. Our codes are available at //github.com/jcw-anonymous/JCW.
Knowledge is a formal way of understanding the world, providing a human-level cognition and intelligence for the next-generation artificial intelligence (AI). One of the representations of knowledge is the structural relations between entities. An effective way to automatically acquire this important knowledge, called Relation Extraction (RE), a sub-task of information extraction, plays a vital role in Natural Language Processing (NLP). Its purpose is to identify semantic relations between entities from natural language text. To date, there are several studies for RE in previous works, which have documented these techniques based on Deep Neural Networks (DNNs) become a prevailing technique in this research. Especially, the supervised and distant supervision methods based on DNNs are the most popular and reliable solutions for RE. This article 1)introduces some general concepts, and further 2)gives a comprehensive overview of DNNs in RE from two points of view: supervised RE, which attempts to improve the standard RE systems, and distant supervision RE, which adopts DNNs to design the sentence encoder and the de-noise method. We further 3)cover some novel methods and describe some recent trends and discuss possible future research directions for this task.
When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.
Self-attention network (SAN) has recently attracted increasing interest due to its fully parallelized computation and flexibility in modeling dependencies. It can be further enhanced with multi-headed attention mechanism by allowing the model to jointly attend to information from different representation subspaces at different positions (Vaswani et al., 2017). In this work, we propose a novel convolutional self-attention network (CSAN), which offers SAN the abilities to 1) capture neighboring dependencies, and 2) model the interaction between multiple attention heads. Experimental results on WMT14 English-to-German translation task demonstrate that the proposed approach outperforms both the strong Transformer baseline and other existing works on enhancing the locality of SAN. Comparing with previous work, our model does not introduce any new parameters.
The unsupervised text clustering is one of the major tasks in natural language processing (NLP) and remains a difficult and complex problem. Conventional \mbox{methods} generally treat this task using separated steps, including text representation learning and clustering the representations. As an improvement, neural methods have also been introduced for continuous representation learning to address the sparsity problem. However, the multi-step process still deviates from the unified optimization target. Especially the second step of cluster is generally performed with conventional methods such as k-Means. We propose a pure neural framework for text clustering in an end-to-end manner. It jointly learns the text representation and the clustering model. Our model works well when the context can be obtained, which is nearly always the case in the field of NLP. We have our method \mbox{evaluated} on two widely used benchmarks: IMDB movie reviews for sentiment classification and $20$-Newsgroup for topic categorization. Despite its simplicity, experiments show the model outperforms previous clustering methods by a large margin. Furthermore, the model is also verified on English wiki dataset as a large corpus.
Why deep neural networks (DNNs) capable of overfitting often generalize well in practice is a mystery in deep learning. Existing works indicate that this observation holds for both complicated real datasets and simple datasets of one-dimensional (1-d) functions. In this work, for natural images and low-frequency dominant 1-d functions, we empirically found that a DNN with common settings first quickly captures the dominant low-frequency components, and then relatively slowly captures high-frequency ones. We call this phenomenon Frequency Principle (F-Principle). F-Principle can be observed over various DNN setups of different activation functions, layer structures and training algorithms in our experiments. F-Principle can be used to understand (i) the behavior of DNN training in the information plane and (ii) why DNNs often generalize well albeit its ability of overfitting. This F-Principle potentially can provide insights into understanding the general principle underlying DNN optimization and generalization for real datasets.
The way that information propagates in neural networks is of great importance. In this paper, we propose Path Aggregation Network (PANet) aiming at boosting information flow in proposal-based instance segmentation framework. Specifically, we enhance the entire feature hierarchy with accurate localization signals in lower layers by bottom-up path augmentation, which shortens the information path between lower layers and topmost feature. We present adaptive feature pooling, which links feature grid and all feature levels to make useful information in each feature level propagate directly to following proposal subnetworks. A complementary branch capturing different views for each proposal is created to further improve mask prediction. These improvements are simple to implement, with subtle extra computational overhead. Our PANet reaches the 1st place in the COCO 2017 Challenge Instance Segmentation task and the 2nd place in Object Detection task without large-batch training. It is also state-of-the-art on MVD and Cityscapes.
Recent advances in the field of network embedding have shown the low-dimensional network representation is playing a critical role in network analysis. However, most of the existing principles of network embedding do not incorporate auxiliary information such as content and labels of nodes flexibly. In this paper, we take a matrix factorization perspective of network embedding, and incorporate structure, content and label information of the network simultaneously. For structure, we validate that the matrix we construct preserves high-order proximities of the network. Label information can be further integrated into the matrix via the process of random walk sampling to enhance the quality of embedding in an unsupervised manner, i.e., without leveraging downstream classifiers. In addition, we generalize the Skip-Gram Negative Sampling model to integrate the content of the network in a matrix factorization framework. As a consequence, network embedding can be learned in a unified framework integrating network structure and node content as well as label information simultaneously. We demonstrate the efficacy of the proposed model with the tasks of semi-supervised node classification and link prediction on a variety of real-world benchmark network datasets.
Social network analysis provides meaningful information about behavior of network members that can be used for diverse applications such as classification, link prediction. However, network analysis is computationally expensive because of feature learning for different applications. In recent years, many researches have focused on feature learning methods in social networks. Network embedding represents the network in a lower dimensional representation space with the same properties which presents a compressed representation of the network. In this paper, we introduce a novel algorithm named "CARE" for network embedding that can be used for different types of networks including weighted, directed and complex. Current methods try to preserve local neighborhood information of nodes, whereas the proposed method utilizes local neighborhood and community information of network nodes to cover both local and global structure of social networks. CARE builds customized paths, which are consisted of local and global structure of network nodes, as a basis for network embedding and uses the Skip-gram model to learn representation vector of nodes. Subsequently, stochastic gradient descent is applied to optimize our objective function and learn the final representation of nodes. Our method can be scalable when new nodes are appended to network without information loss. Parallelize generation of customized random walks is also used for speeding up CARE. We evaluate the performance of CARE on multi label classification and link prediction tasks. Experimental results on various networks indicate that the proposed method outperforms others in both Micro and Macro-f1 measures for different size of training data.
Cross-modal information retrieval aims to find heterogeneous data of various modalities from a given query of one modality. The main challenge is to map different modalities into a common semantic space, in which distance between concepts in different modalities can be well modeled. For cross-modal information retrieval between images and texts, existing work mostly uses off-the-shelf Convolutional Neural Network (CNN) for image feature extraction. For texts, word-level features such as bag-of-words or word2vec are employed to build deep learning models to represent texts. Besides word-level semantics, the semantic relations between words are also informative but less explored. In this paper, we model texts by graphs using similarity measure based on word2vec. A dual-path neural network model is proposed for couple feature learning in cross-modal information retrieval. One path utilizes Graph Convolutional Network (GCN) for text modeling based on graph representations. The other path uses a neural network with layers of nonlinearities for image modeling based on off-the-shelf features. The model is trained by a pairwise similarity loss function to maximize the similarity of relevant text-image pairs and minimize the similarity of irrelevant pairs. Experimental results show that the proposed model outperforms the state-of-the-art methods significantly, with 17% improvement on accuracy for the best case.