亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This position paper presents a theoretical framework for enhancing explainable artificial intelligence (xAI) through emergent communication (EmCom), focusing on creating a causal understanding of AI model outputs. We explore the novel integration of EmCom into AI systems, offering a paradigm shift from conventional associative relationships between inputs and outputs to a more nuanced, causal interpretation. The framework aims to revolutionize how AI processes are understood, making them more transparent and interpretable. While the initial application of this model is demonstrated on synthetic data, the implications of this research extend beyond these simple applications. This general approach has the potential to redefine interactions with AI across multiple domains, fostering trust and informed decision-making in healthcare and in various sectors where AI's decision-making processes are critical. The paper discusses the theoretical underpinnings of this approach, its potential broad applications, and its alignment with the growing need for responsible and transparent AI systems in an increasingly digital world.

相關內容

Purpose: To investigate whether Fractal Dimension (FD)-based oculomics could be used for individual risk prediction by evaluating repeatability and robustness. Methods: We used two datasets: Caledonia, healthy adults imaged multiple times in quick succession for research (26 subjects, 39 eyes, 377 colour fundus images), and GRAPE, glaucoma patients with baseline and follow-up visits (106 subjects, 196 eyes, 392 images). Mean follow-up time was 18.3 months in GRAPE, thus it provides a pessimistic lower-bound as vasculature could change. FD was computed with DART and AutoMorph. Image quality was assessed with QuickQual, but no images were initially excluded. Pearson, Spearman, and Intraclass Correlation (ICC) were used for population-level repeatability. For individual-level repeatability, we introduce measurement noise parameter {\lambda} which is within-eye Standard Deviation (SD) of FD measurements in units of between-eyes SD. Results: In Caledonia, ICC was 0.8153 for DART and 0.5779 for AutoMorph, Pearson/Spearman correlation (first and last image) 0.7857/0.7824 for DART, and 0.3933/0.6253 for AutoMorph. In GRAPE, Pearson/Spearman correlation (first and next visit) was 0.7479/0.7474 for DART, and 0.7109/0.7208 for AutoMorph (all p<0.0001). Median {\lambda} in Caledonia without exclusions was 3.55\% for DART and 12.65\% for AutoMorph, and improved to up to 1.67\% and 6.64\% with quality-based exclusions, respectively. Quality exclusions primarily mitigated large outliers. Worst quality in an eye correlated strongly with {\lambda} (Pearson 0.5350-0.7550, depending on dataset and method, all p<0.0001). Conclusions: Repeatability was sufficient for individual-level predictions in heterogeneous populations. DART performed better on all metrics and might be able to detect small, longitudinal changes, highlighting the potential of robust methods.

Most businesses impose a supervisory hierarchy on employees to facilitate management, decision-making, and collaboration, yet routine inter-employee communication patterns within workplaces tend to emerge more naturally as a consequence of both supervisory relationships and the needs of the organization. What then is the relationship between a formal organizational structure and the emergent communications between its employees? Understanding the nature of this relationship is critical for the successful management of an organization. While scholars of organizational management have proposed theories relating organizational trees to communication dynamics, and separately, network scientists have studied the topological structure of communication patterns in different types of organizations, existing empirical analyses are both lacking in representativeness and limited in size. In fact, much of the methodology used to study the relationship between organizational hierarchy and communication patterns comes from analyses of the Enron email corpus, reflecting a uniquely dysfunctional corporate environment. In this paper, we develop new methodology for assessing the relationship between organizational hierarchy and communication dynamics and apply it to Microsoft Corporation, currently the highest valued company in the world, consisting of approximately 200,000 employees divided into 88 teams. This reveals distinct communication network structures within and between teams. We then characterize the relationship of routine employee communication patterns to these team supervisory hierarchies, while empirically evaluating several theories of organizational management and performance. To do so, we propose new measures of communication reciprocity and new shortest-path distances for trees to track the frequency of messages passed up, down, and across the organizational hierarchy.

This article is concerned with the multilevel Monte Carlo (MLMC) methods for approximating expectations of some functions of the solution to the Heston 3/2-model from mathematical finance, which takes values in $(0, \infty)$ and possesses superlinearly growing drift and diffusion coefficients. To discretize the SDE model, a new Milstein-type scheme is proposed to produce independent sample paths. The proposed scheme can be explicitly solved and is positivity-preserving unconditionally, i.e., for any time step-size $h>0$. This positivity-preserving property for large discretization time steps is particularly desirable in the MLMC setting. Furthermore, a mean-square convergence rate of order one is proved in the non-globally Lipschitz regime, which is not trivial, as the diffusion coefficient grows super-linearly. The obtained order-one convergence in turn promises the desired relevant variance of the multilevel estimator and justifies the optimal complexity $\mathcal{O}(\epsilon^{-2})$ for the MLMC approach, where $\epsilon > 0$ is the required target accuracy. Numerical experiments are finally reported to confirm the theoretical findings.

Distributed control increases system scalability, flexibility, and redundancy. Foundational to such decentralisation is consensus formation, by which decision-making and coordination are achieved. However, decentralised multi-agent systems are inherently vulnerable to disruption. To develop a resilient consensus approach, inspiration is taken from the study of social systems and their dynamics; specifically, the Deffuant Model. A dynamic algorithm is presented enabling efficient consensus to be reached with an unknown number of disruptors present within a multi-agent system. By inverting typical social tolerance, agents filter out extremist non-standard opinions that would drive them away from consensus. This approach allows distributed systems to deal with unknown disruptions, without knowledge of the network topology or the numbers and behaviours of the disruptors. A disruptor-agnostic algorithm is particularly suitable to real-world applications where this information is typically unknown. Faster and tighter convergence can be achieved across a range of scenarios with the social dynamics inspired algorithm, compared with standard Mean-Subsequence-Reduced-type methods.

Language models (LMs) show promise as tools for communicating science to the general public by simplifying and summarizing complex language. Because models can be prompted to generate text for a specific audience (e.g., college-educated adults), LMs might be used to create multiple versions of plain language summaries for people with different familiarities of scientific topics. However, it is not clear what the benefits and pitfalls of adaptive plain language are. When is simplifying necessary, what are the costs in doing so, and do these costs differ for readers with different background knowledge? Through three within-subjects studies in which we surface summaries for different envisioned audiences to participants of different backgrounds, we found that while simpler text led to the best reading experience for readers with little to no familiarity in a topic, high familiarity readers tended to ignore certain details in overly plain summaries (e.g., study limitations). Our work provides methods and guidance on ways of adapting plain language summaries beyond the single "general" audience.

Robust Markov Decision Processes (RMDPs) are a widely used framework for sequential decision-making under parameter uncertainty. RMDPs have been extensively studied when the objective is to maximize the discounted return, but little is known for average optimality (optimizing the long-run average of the rewards obtained over time) and Blackwell optimality (remaining discount optimal for all discount factors sufficiently close to 1). In this paper, we prove several foundational results for RMDPs beyond the discounted return. We show that average optimal policies can be chosen stationary and deterministic for sa-rectangular RMDPs but, perhaps surprisingly, that history-dependent (Markovian) policies strictly outperform stationary policies for average optimality in s-rectangular RMDPs. We also study Blackwell optimality for sa-rectangular RMDPs, where we show that {\em approximate} Blackwell optimal policies always exist, although Blackwell optimal policies may not exist. We also provide a sufficient condition for their existence, which encompasses virtually any examples from the literature. We then discuss the connection between average and Blackwell optimality, and we describe several algorithms to compute the optimal average return. Interestingly, our approach leverages the connections between RMDPs and stochastic games.

A topical challenge for algorithms in general and for automatic image categorization and generation in particular is presented in the form of a drawing for AI to understand. In a second vein, AI is challenged to produce something similar from verbal description. The aim of the paper is to highlight strengths and deficiencies of current Artificial Intelligence approaches while coarsely sketching a way forward. A general lack of encompassing symbol-embedding and (not only) -grounding in some bodily basis is made responsible for current deficiencies. A concomitant dearth of hierarchical organization of concepts follows suite. As a remedy for these shortcomings, it is proposed to take a wide step back and to newly incorporate aspects of cybernetics and analog control processes. It is claimed that a promising overarching perspective is provided by the Ouroboros Model with a valid and versatile algorithmic backbone for general cognition at all accessible levels of abstraction and capabilities. Reality, rules, truth, and Free Will are all useful abstractions according to the Ouroboros Model. Logic deduction as well as intuitive guesses are claimed as produced on the basis of one compartmentalized memory for schemata and a pattern-matching, i.e., monitoring process termed consumption analysis. The latter directs attention on short (attention proper) and also on long times scales (emotional biases). In this cybernetic approach, discrepancies between expectations and actual activations (e.g., sensory precepts) drive the general process of cognition and at the same time steer the storage of new and adapted memory entries. Dedicated structures in the human brain work in concert according to this scheme.

Large language models (LLMs) have demonstrated strong results on a range of NLP tasks. Typically, outputs are obtained via autoregressive sampling from the LLM's underlying distribution. We show that this inference strategy can be suboptimal for a range of tasks and associated evaluation metrics. As a remedy, we propose metric aware LLM inference: a decision theoretic approach optimizing for custom metrics at inference time. We report improvements over baselines on academic benchmarks and publicly available models.

This paper does not describe a working system. Instead, it presents a single idea about representation which allows advances made by several different groups to be combined into an imaginary system called GLOM. The advances include transformers, neural fields, contrastive representation learning, distillation and capsules. GLOM answers the question: How can a neural network with a fixed architecture parse an image into a part-whole hierarchy which has a different structure for each image? The idea is simply to use islands of identical vectors to represent the nodes in the parse tree. If GLOM can be made to work, it should significantly improve the interpretability of the representations produced by transformer-like systems when applied to vision or language

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司