This work studies the problem of learning unbiased algorithms from biased feedback for recommender systems. We address this problem from both theoretical and algorithmic perspectives. Recent works in unbiased learning have advanced the state-of-the-art with various techniques such as meta-learning, knowledge distillation, and information bottleneck. Despite their empirical successes, most of them lack theoretical guarantee, forming non-negligible gaps between the theories and recent algorithms. To this end, we first view the unbiased recommendation problem from a distribution shift perspective. We theoretically analyze the generalization bounds of unbiased learning and suggest their close relations with recent unbiased learning objectives. Based on the theoretical analysis, we further propose a principled framework, Adversarial Self-Training (AST), for unbiased recommendation. Empirical evaluation on real-world and semi-synthetic datasets demonstrate the effectiveness of the proposed AST.
Recommender systems and search are both indispensable in facilitating personalization and ease of browsing in online fashion platforms. However, the two tools often operate independently, failing to combine the strengths of recommender systems to accurately capture user tastes with search systems' ability to process user queries. We propose a novel remedy to this problem by automatically recommending personalized fashion items based on a user-provided text request. Our proposed model, WhisperLite, uses contrastive learning to capture user intent from natural language text and improves the recommendation quality of fashion products. WhisperLite combines the strength of CLIP embeddings with additional neural network layers for personalization, and is trained using a composite loss function based on binary cross entropy and contrastive loss. The model demonstrates a significant improvement in offline recommendation retrieval metrics when tested on a real-world dataset collected from an online retail fashion store, as well as widely used open-source datasets in different e-commerce domains, such as restaurants, movies and TV shows, clothing and shoe reviews. We additionally conduct a user study that captures user judgements on the relevance of the model's recommended items, confirming the relevancy of WhisperLite's recommendations in an online setting.
Self-supervised learning (SSL) recently has achieved outstanding success on recommendation. By setting up an auxiliary task (either predictive or contrastive), SSL can discover supervisory signals from the raw data without human annotation, which greatly mitigates the problem of sparse user-item interactions. However, most SSL-based recommendation models rely on general-purpose auxiliary tasks, e.g., maximizing correspondence between node representations learned from the original and perturbed interaction graphs, which are explicitly irrelevant to the recommendation task. Accordingly, the rich semantics reflected by social relationships and item categories, which lie in the recommendation data-based heterogeneous graphs, are not fully exploited. To explore recommendation-specific auxiliary tasks, we first quantitatively analyze the heterogeneous interaction data and find a strong positive correlation between the interactions and the number of user-item paths induced by meta-paths. Based on the finding, we design two auxiliary tasks that are tightly coupled with the target task (one is predictive and the other one is contrastive) towards connecting recommendation with the self-supervision signals hiding in the positive correlation. Finally, a model-agnostic DUal-Auxiliary Learning (DUAL) framework which unifies the SSL and recommendation tasks is developed. The extensive experiments conducted on three real-world datasets demonstrate that DUAL can significantly improve recommendation, reaching the state-of-the-art performance.
Bayesian optimization (BO) is a widely popular approach for the hyperparameter optimization (HPO) in machine learning. At its core, BO iteratively evaluates promising configurations until a user-defined budget, such as wall-clock time or number of iterations, is exhausted. While the final performance after tuning heavily depends on the provided budget, it is hard to pre-specify an optimal value in advance. In this work, we propose an effective and intuitive termination criterion for BO that automatically stops the procedure if it is sufficiently close to the global optimum. Our key insight is that the discrepancy between the true objective (predictive performance on test data) and the computable target (validation performance) suggests stopping once the suboptimality in optimizing the target is dominated by the statistical estimation error. Across an extensive range of real-world HPO problems and baselines, we show that our termination criterion achieves a better trade-off between the test performance and optimization time. Additionally, we find that overfitting may occur in the context of HPO, which is arguably an overlooked problem in the literature, and show how our termination criterion helps to mitigate this phenomenon on both small and large datasets.
In recommender systems, a common problem is the presence of various biases in the collected data, which deteriorates the generalization ability of the recommendation models and leads to inaccurate predictions. Doubly robust (DR) learning has been studied in many tasks in RS, with the advantage that unbiased learning can be achieved when either a single imputation or a single propensity model is accurate. In this paper, we propose a multiple robust (MR) estimator that can take the advantage of multiple candidate imputation and propensity models to achieve unbiasedness. Specifically, the MR estimator is unbiased when any of the imputation or propensity models, or a linear combination of these models is accurate. Theoretical analysis shows that the proposed MR is an enhanced version of DR when only having a single imputation and propensity model, and has a smaller bias. Inspired by the generalization error bound of MR, we further propose a novel multiple robust learning approach with stabilization. We conduct extensive experiments on real-world and semi-synthetic datasets, which demonstrates the superiority of the proposed approach over state-of-the-art methods.
Data in Knowledge Graphs often represents part of the current state of the real world. Thus, to stay up-to-date the graph data needs to be updated frequently. To utilize information from Knowledge Graphs, many state-of-the-art machine learning approaches use embedding techniques. These techniques typically compute an embedding, i.e., vector representations of the nodes as input for the main machine learning algorithm. If a graph update occurs later on -- specifically when nodes are added or removed -- the training has to be done all over again. This is undesirable, because of the time it takes and also because downstream models which were trained with these embeddings have to be retrained if they change significantly. In this paper, we investigate embedding updates that do not require full retraining and evaluate them in combination with various embedding models on real dynamic Knowledge Graphs covering multiple use cases. We study approaches that place newly appearing nodes optimally according to local information, but notice that this does not work well. However, we find that if we continue the training of the old embedding, interleaved with epochs during which we only optimize for the added and removed parts, we obtain good results in terms of typical metrics used in link prediction. This performance is obtained much faster than with a complete retraining and hence makes it possible to maintain embeddings for dynamic Knowledge Graphs.
This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problems. Obtained results show the relevance of the proposed method and provide one of the first experimental evidence of transferability of spectral filter coefficients from one graph to another. Our source codes are publicly available at: //github.com/balcilar/Spectral-Designed-Graph-Convolutions
Explainable recommendation attempts to develop models that generate not only high-quality recommendations but also intuitive explanations. The explanations may either be post-hoc or directly come from an explainable model (also called interpretable or transparent model in some context). Explainable recommendation tries to address the problem of why: by providing explanations to users or system designers, it helps humans to understand why certain items are recommended by the algorithm, where the human can either be users or system designers. Explainable recommendation helps to improve the transparency, persuasiveness, effectiveness, trustworthiness, and satisfaction of recommendation systems. In this survey, we review works on explainable recommendation in or before the year of 2019. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation on three perspectives: 1) We provide a chronological research timeline of explainable recommendation, including user study approaches in the early years and more recent model-based approaches. 2) We provide a two-dimensional taxonomy to classify existing explainable recommendation research: one dimension is the information source (or display style) of the explanations, and the other dimension is the algorithmic mechanism to generate explainable recommendations. 3) We summarize how explainable recommendation applies to different recommendation tasks, such as product recommendation, social recommendation, and POI recommendation. We also devote a section to discuss the explanation perspectives in broader IR and AI/ML research. We end the survey by discussing potential future directions to promote the explainable recommendation research area and beyond.
Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.
Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user's interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path. In this paper, we contribute a new model named Knowledge-aware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.
State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely neglected recently due to the availability of vast amount of data, and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors. A great challenge for using knowledge bases for recommendation is how to integrated large-scale structured and unstructured data, while taking advantage of collaborative filtering for highly accurate performance. Recent achievements on knowledge base embedding sheds light on this problem, which makes it possible to learn user and item representations while preserving the structure of their relationship with external knowledge. In this work, we propose to reason over knowledge base embeddings for personalized recommendation. Specifically, we propose a knowledge base representation learning approach to embed heterogeneous entities for recommendation. Experimental results on real-world dataset verified the superior performance of our approach compared with state-of-the-art baselines.