This paper introduces a novel deep-learning based generator of synthetic graphs that represent intra-Autonomous System (AS) in the Internet, named Deep-generative graphs for the Internet (DGGI). It also presents a novel massive dataset of real intra-AS graphs extracted from the project Internet Topology Data Kit (ITDK), called Internet Graphs (IGraphs). To create IGraphs, the Filtered Recurrent Multi-level (FRM) algorithm for community extraction was developed. It is shown that DGGI creates synthetic graphs which accurately reproduce the properties of centrality, clustering, assortativity, and node degree. The DGGI generator overperforms existing Internet topology generators. On average, DGGI improves the Maximum Mean Discrepancy (MMD) metric 84.4%, 95.1%, 97.9%, and 94.7% for assortativity, betweenness, clustering, and node degree, respectively.
This paper deals with the Multi-robot Exploration (MRE) under communication constraints problem. We propose a novel intermittent rendezvous method that allows robots to explore an unknown environment while sharing maps at rendezvous locations through agreements. In our method, robots update the agreements to spread the rendezvous locations during the exploration and prioritize exploring unknown areas near them. To generate the agreements automatically, we reduced the MRE to instances of the Job Shop Scheduling Problem (JSSP) and ensured intermittent communication through a temporal connectivity graph. We evaluate our method in simulation in various virtual urban environments and a Gazebo simulation using the Robot Operating System (ROS). Our results suggest that our method can be better than using relays or maintaining intermittent communication with a base station since we can explore faster without additional hardware to create a relay network.
We present the Fast Chebyshev Transform (FCT), a fast, randomized algorithm to compute a Chebyshev approximation of functions in high-dimensions from the knowledge of the location of its nonzero Chebyshev coefficients. Rather than sampling a full-resolution Chebyshev grid in each dimension, we randomly sample several grids with varied resolutions and solve a least-squares problem in coefficient space in order to compute a polynomial approximating the function of interest across all grids simultaneously. We theoretically and empirically show that the FCT exhibits quasi-linear scaling and high numerical accuracy on challenging and complex high-dimensional problems. We demonstrate the effectiveness of our approach compared to alternative Chebyshev approximation schemes. In particular, we highlight our algorithm's effectiveness in high dimensions, demonstrating significant speedups over commonly-used alternative techniques.
We introduce a library called Push that takes a probabilistic programming approach to Bayesian deep learning (BDL). This library enables concurrent execution of BDL inference algorithms on multi-GPU hardware for neural network (NN) models. To accomplish this, Push introduces an abstraction that represents an input NN as a particle. Push enables easy creation of particles so that an input NN can be replicated and particles can communicate asynchronously so that a variety of parameter updates can be expressed, including common BDL algorithms. Our hope is that Push lowers the barrier to experimenting with BDL by streamlining the scaling of particles across GPUs. We evaluate the scaling behavior of particles on single-node multi-GPU devices on vision and scientific machine learning (SciML) tasks.
Knowledge-based Visual Question Answering (KB-VQA) requires VQA systems to utilize knowledge from existing knowledge bases to answer visually-grounded questions. Retrieval-Augmented Visual Question Answering (RA-VQA), a strong framework to tackle KB-VQA, first retrieves related documents with Dense Passage Retrieval (DPR) and then uses them to answer questions. This paper proposes Fine-grained Late-interaction Multi-modal Retrieval (FLMR) which significantly improves knowledge retrieval in RA-VQA. FLMR addresses two major limitations in RA-VQA's retriever: (1) the image representations obtained via image-to-text transforms can be incomplete and inaccurate and (2) relevance scores between queries and documents are computed with one-dimensional embeddings, which can be insensitive to finer-grained relevance. FLMR overcomes these limitations by obtaining image representations that complement those from the image-to-text transforms using a vision model aligned with an existing text-based retriever through a simple alignment network. FLMR also encodes images and questions using multi-dimensional embeddings to capture finer-grained relevance between queries and documents. FLMR significantly improves the original RA-VQA retriever's PRRecall@5 by approximately 8\%. Finally, we equipped RA-VQA with two state-of-the-art large multi-modal/language models to achieve $\sim61\%$ VQA score in the OK-VQA dataset.
For artificial intelligence, high-utility sequential rule mining (HUSRM) is a knowledge discovery method that can reveal the associations between events in the sequences. Recently, abundant methods have been proposed to discover high-utility sequence rules. However, the existing methods are all related to point-based sequences. Interval events that persist for some time are common. Traditional interval-event sequence knowledge discovery tasks mainly focus on pattern discovery, but patterns cannot reveal the correlation between interval events well. Moreover, the existing HUSRM algorithms cannot be directly applied to interval-event sequences since the relation in interval-event sequences is much more intricate than those in point-based sequences. In this work, we propose a utility-driven interval rule mining (UIRMiner) algorithm that can extract all utility-driven interval rules (UIRs) from the interval-event sequence database to solve the problem. In UIRMiner, we first introduce a numeric encoding relation representation, which can save much time on relation computation and storage on relation representation. Furthermore, to shrink the search space, we also propose a complement pruning strategy, which incorporates the utility upper bound with the relation. Finally, plentiful experiments implemented on both real-world and synthetic datasets verify that UIRMiner is an effective and efficient algorithm.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
This paper surveys the field of transfer learning in the problem setting of Reinforcement Learning (RL). RL has been the key solution to sequential decision-making problems. Along with the fast advance of RL in various domains. including robotics and game-playing, transfer learning arises as an important technique to assist RL by leveraging and transferring external expertise to boost the learning process. In this survey, we review the central issues of transfer learning in the RL domain, providing a systematic categorization of its state-of-the-art techniques. We analyze their goals, methodologies, applications, and the RL frameworks under which these transfer learning techniques would be approachable. We discuss the relationship between transfer learning and other relevant topics from an RL perspective and also explore the potential challenges as well as future development directions for transfer learning in RL.
Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.
This paper describes a general framework for learning Higher-Order Network Embeddings (HONE) from graph data based on network motifs. The HONE framework is highly expressive and flexible with many interchangeable components. The experimental results demonstrate the effectiveness of learning higher-order network representations. In all cases, HONE outperforms recent embedding methods that are unable to capture higher-order structures with a mean relative gain in AUC of $19\%$ (and up to $75\%$ gain) across a wide variety of networks and embedding methods.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.