Non-blind deconvolution aims to restore a sharp image from its blurred counterpart given an obtained kernel. Existing deep neural architectures are often built based on large datasets of sharp ground truth images and trained with supervision. Sharp, high quality ground truth images, however, are not always available, especially for biomedical applications. This severely hampers the applicability of current approaches in practice. In this paper, we propose a novel non-blind deconvolution method that leverages the power of deep learning and classic iterative deconvolution algorithms. Our approach combines a pre-trained network to extract deep features from the input image with iterative Richardson-Lucy deconvolution steps. Subsequently, a zero-shot optimisation process is employed to integrate the deconvolved features, resulting in a high-quality reconstructed image. By performing the preliminary reconstruction with the classic iterative deconvolution method, we can effectively utilise a smaller network to produce the final image, thus accelerating the reconstruction whilst reducing the demand for valuable computational resources. Our method demonstrates significant improvements in various real-world applications non-blind deconvolution tasks.
Deep Reinforcement Learning (DRL) is vital in various AI applications. DRL algorithms comprise diverse compute kernels, which may not be simultaneously optimized using a homogeneous architecture. However, even with available heterogeneous architectures, optimizing DRL performance remains a challenge due to the complexity of hardware and programming models employed in modern data centers. To address this, we introduce PEARL, a toolkit for composing parallel DRL systems on heterogeneous platforms consisting of general-purpose processors (CPUs) and accelerators (GPUs, FPGAs). Our innovations include: 1. A general training protocol agnostic of the underlying hardware, enabling portable implementations across various processors and accelerators. 2. Incorporation of DRL-specific scheduling optimizations within the protocol, facilitating parallelized training and enhancing the overall system performance. 3. High-level API for productive development using the toolkit. 4. Automatic optimization of DRL task-to-device assignments through performance estimation, supporting various optimization metrics including throughput and power efficiency. We showcase our toolkit through experimentation with two widely used DRL algorithms, DQN and DDPG, on two diverse heterogeneous platforms. The generated implementations outperform state-of-the-art libraries for CPU-GPU platforms by throughput improvements of up to 2.1$\times$ and power efficiency improvements of up to 3.4$\times$.
We give simply exponential lower bounds on the probabilities of a given strongly Rayleigh distribution, depending only on its expectation. This resolves a weak version of a problem left open by Karlin-Klein-Oveis Gharan in their recent breakthrough work on metric TSP, and this resolution leads to a minor improvement of their approximation factor for metric TSP. Our results also allow for a more streamlined analysis of the algorithm. To achieve these new bounds, we build upon the work of Gurvits-Leake on the use of the productization technique for bounding the capacity of a real stable polynomial. This technique allows one to reduce certain inequalities for real stable polynomials to products of affine linear forms, which have an underlying matrix structure. In this paper, we push this technique further by characterizing the worst-case polynomials via bipartitioned forests. This rigid combinatorial structure yields a clean induction argument, which implies our stronger bounds. In general, we believe the results of this paper will lead to further improvement and simplification of the analysis of various combinatorial and probabilistic bounds and algorithms.
Fusion-based hyperspectral image (HSI) super-resolution aims to produce a high-spatial-resolution HSI by fusing a low-spatial-resolution HSI and a high-spatial-resolution multispectral image. Such a HSI super-resolution process can be modeled as an inverse problem, where the prior knowledge is essential for obtaining the desired solution. Motivated by the success of diffusion models, we propose a novel spectral diffusion prior for fusion-based HSI super-resolution. Specifically, we first investigate the spectrum generation problem and design a spectral diffusion model to model the spectral data distribution. Then, in the framework of maximum a posteriori, we keep the transition information between every two neighboring states during the reverse generative process, and thereby embed the knowledge of trained spectral diffusion model into the fusion problem in the form of a regularization term. At last, we treat each generation step of the final optimization problem as its subproblem, and employ the Adam to solve these subproblems in a reverse sequence. Experimental results conducted on both synthetic and real datasets demonstrate the effectiveness of the proposed approach. The code of the proposed approach will be available on //github.com/liuofficial/SDP.
Randomized experiments are a powerful methodology for data-driven evaluation of decisions or interventions. Yet, their validity may be undermined by network interference. This occurs when the treatment of one unit impacts not only its outcome but also that of connected units, biasing traditional treatment effect estimations. Our study introduces a new framework to accommodate complex and unknown network interference, moving beyond specialized models in the existing literature. Our framework, which we term causal message-passing, is grounded in a high-dimensional approximate message passing methodology and is specifically tailored to experimental design settings with prevalent network interference. Utilizing causal message-passing, we present a practical algorithm for estimating the total treatment effect and demonstrate its efficacy in four numerical scenarios, each with its unique interference structure.
We propose the on-the-fly ensembling of a machine translation model with an LLM, prompted on the same task and input. We perform experiments on 4 language pairs (both directions) with varying data amounts. We find that a slightly weaker-at-translation LLM can improve translations of a NMT model, and ensembling with an LLM can produce better translations than ensembling two stronger MT models. We combine our method with various techniques from LLM prompting, such as in context learning and translation context.
Simultaneous sequence generation is a pivotal task for real-time scenarios, such as streaming speech recognition, simultaneous machine translation and simultaneous speech translation, where the target sequence is generated while receiving the source sequence. The crux of achieving high-quality generation with low latency lies in identifying the optimal moments for generating, accomplished by learning a mapping between the source and target sequences. However, existing methods often rely on task-specific heuristics for different sequence types, limiting the model's capacity to adaptively learn the source-target mapping and hindering the exploration of multi-task learning for various simultaneous tasks. In this paper, we propose a unified segment-to-segment framework (Seg2Seg) for simultaneous sequence generation, which learns the mapping in an adaptive and unified manner. During the process of simultaneous generation, the model alternates between waiting for a source segment and generating a target segment, making the segment serve as the natural bridge between the source and target. To accomplish this, Seg2Seg introduces a latent segment as the pivot between source to target and explores all potential source-target mappings via the proposed expectation training, thereby learning the optimal moments for generating. Experiments on multiple simultaneous generation tasks demonstrate that Seg2Seg achieves state-of-the-art performance and exhibits better generality across various tasks.
Spectral bounds form a powerful tool to estimate the minimum distances of quasi-cyclic codes. They generalize the defining set bounds of cyclic codes to those of quasi-cyclic codes. Based on the eigenvalues of quasi-cyclic codes and the corresponding eigenspaces, we provide an improved spectral bound for quasi-cyclic codes. Numerical results verify that the improved bound outperforms the Jensen bound in almost all cases. Based on the improved bound, we propose a general construction of quasi-cyclic codes with excellent designed minimum distances. For the quasi-cyclic codes produced by this general construction, the improved spectral bound is always sharper than the Jensen bound.
Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.
Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.
Answering questions that require reading texts in an image is challenging for current models. One key difficulty of this task is that rare, polysemous, and ambiguous words frequently appear in images, e.g., names of places, products, and sports teams. To overcome this difficulty, only resorting to pre-trained word embedding models is far from enough. A desired model should utilize the rich information in multiple modalities of the image to help understand the meaning of scene texts, e.g., the prominent text on a bottle is most likely to be the brand. Following this idea, we propose a novel VQA approach, Multi-Modal Graph Neural Network (MM-GNN). It first represents an image as a graph consisting of three sub-graphs, depicting visual, semantic, and numeric modalities respectively. Then, we introduce three aggregators which guide the message passing from one graph to another to utilize the contexts in various modalities, so as to refine the features of nodes. The updated nodes have better features for the downstream question answering module. Experimental evaluations show that our MM-GNN represents the scene texts better and obviously facilitates the performances on two VQA tasks that require reading scene texts.