亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Supervised finetuning (SFT) on instruction datasets has played a crucial role in achieving the remarkable zero-shot generalization capabilities observed in modern large language models (LLMs). However, the annotation efforts required to produce high quality responses for instructions are becoming prohibitively expensive, especially as the number of tasks spanned by instruction datasets continues to increase. Active learning is effective in identifying useful subsets of samples to annotate from an unlabeled pool, but its high computational cost remains a barrier to its widespread applicability in the context of LLMs. To mitigate the annotation cost of SFT and circumvent the computational bottlenecks of active learning, we propose using experimental design. Experimental design techniques select the most informative samples to label, and typically maximize some notion of uncertainty and/or diversity. In our work, we implement a framework that evaluates several existing and novel experimental design techniques and find that these methods consistently yield significant gains in label efficiency with little computational overhead. On generative tasks, our methods achieve the same generalization performance with only $50\%$ of annotation cost required by random sampling.

相關內容

The uplink sum-throughput of distributed massive multiple-input-multiple-output (mMIMO) networks depends majorly on Access point (AP)-User Equipment (UE) association and power control. The AP-UE association and power control both are important problems in their own right in distributed mMIMO networks to improve scalability and reduce front-haul load of the network, and to enhance the system performance by mitigating the interference and boosting the desired signals, respectively. Unlike previous studies, which focused primarily on addressing these two problems separately, this work addresses the uplink sum-throughput maximization problem in distributed mMIMO networks by solving the joint AP-UE association and power control problem, while maintaining Quality-of-Service (QoS) requirements for each UE. To improve scalability, we present an l1-penalty function that delicately balances the trade-off between spectral efficiency (SE) and front-haul signaling load. Our proposed methodology leverages fractional programming, Lagrangian dual formation, and penalty functions to provide an elegant and effective iterative solution with guaranteed convergence. Extensive numerical simulations validate the efficacy of the proposed technique for maximizing sum-throughput while considering the joint AP-UE association and power control problem, demonstrating its superiority over approaches that address these problems individually. Furthermore, the results show that the introduced penalty function can help us effectively control the maximum front-haul load.

Large Language Models (LLMs) employing Chain-of-Thought (CoT) prompting have broadened the scope for improving multi-step reasoning capabilities. We generally divide multi-step reasoning into two phases: path generation to generate the reasoning path(s); and answer calibration post-processing the reasoning path(s) to obtain a final answer. However, the existing literature lacks systematic analysis on different answer calibration approaches. In this paper, we summarize the taxonomy of recent answer calibration techniques and break them down into step-level and path-level strategies. We then conduct a thorough evaluation on these strategies from a unified view, systematically scrutinizing step-level and path-level answer calibration across multiple paths. Experimental results reveal that integrating the dominance of both strategies tends to derive optimal outcomes. Our study holds the potential to illuminate key insights for optimizing multi-step reasoning with answer calibration.

Reduced-order models (ROMs) allow for the simulation of blood flow in patient-specific vasculatures without the high computational cost and wait time associated with traditional computational fluid dynamics (CFD) models. Unfortunately, due to the simplifications made in their formulations, ROMs can suffer from significantly reduced accuracy. One common simplifying assumption is the continuity of static or total pressure over vascular junctions. In many cases, this assumption has been shown to introduce significant error. We propose a model to account for this pressure difference, with the ultimate goal of increasing the accuracy of cardiovascular ROMs. Our model successfully uses a structure common in existing ROMs in conjunction with machine-learning techniques to predict the pressure difference over a vascular bifurcation. We analyze the performance of our model on steady and transient flows, testing it on three bifurcation cohorts representing three different bifurcation geometric types. We also compare the efficacy of different machine-learning techniques and two different model modalities.

We present CharacterMixer, a system for blending two rigged 3D characters with different mesh and skeleton topologies while maintaining a rig throughout interpolation. CharacterMixer also enables interpolation during motion for such characters, a novel feature. Interpolation is an important shape editing operation, but prior methods have limitations when applied to rigged characters: they either ignore the rig (making interpolated characters no longer posable) or use a fixed rig and mesh topology. To handle different mesh topologies, CharacterMixer uses a signed distance field (SDF) representation of character shapes, with one SDF per bone. To handle different skeleton topologies, it computes a hierarchical correspondence between source and target character skeletons and interpolates the SDFs of corresponding bones. This correspondence also allows the creation of a single "unified skeleton" for posing and animating interpolated characters. We show that CharacterMixer produces qualitatively better interpolation results than two state-of-the-art methods while preserving a rig throughout interpolation.

Configuring and evolving dashboards in complex and large-scale Systems-of-Systems (SoS) can be an expensive and cumbersome task due to the many Key Performance Indicators (KPIs) that are usually collected and have to be arranged in a number of visualizations. Unfortunately, setting up dashboards is still a largely manual and error-prone task requiring extensive human intervention. This short paper describes emerging results about the definition of a model-driven technology-agnostic approach that can automatically transform a simple list of KPIs into a dashboard model, and then translate the model into an actual dashboard for a target dashboard technology. Dashboard customization can be efficiently obtained by solely modifying the abstract model representation, freeing operators from expensive interactions with actual dashboards.

Proving super-polynomial lower bounds on the size of proofs of unsatisfiability of Boolean formulas using resolution over parities is an outstanding problem that has received a lot of attention after its introduction by Raz and Tzamaret [Ann. Pure Appl. Log.'08]. Very recently, Efremenko, Garl\'ik and Itsykson [ECCC'23] proved the first exponential lower bounds on the size of ResLin proofs that were additionally restricted to be bottom-regular. We show that there are formulas for which such regular ResLin proofs of unsatisfiability continue to have exponential size even though there exists short proofs of their unsatisfiability in ordinary, non-regular resolution. This is the first super-polynomial separation between the power of general ResLin and and that of regular ResLin for any natural notion of regularity. Our argument, while building upon the work of Efremenko et al., uses additional ideas from the literature on lifting theorems.

Traditional rigid endoscopes have challenges in flexibly treating tumors located deep in the brain, and low operability and fixed viewing angles limit its development. This study introduces a novel dual-segment flexible robotic endoscope MicroNeuro, designed to perform biopsies with dexterous surgical manipulation deep in the brain. Taking into account the uncertainty of the control model, an image-based visual servoing with online robot Jacobian estimation has been implemented to enhance motion accuracy. Furthermore, the application of model predictive control with constraints significantly bolsters the flexible robot's ability to adaptively track mobile objects and resist external interference. Experimental results underscore that the proposed control system enhances motion stability and precision. Phantom testing substantiates its considerable potential for deployment in neurosurgery.

Persistence diagrams (PD)s play a central role in topological data analysis, and are used in an ever increasing variety of applications. The comparison of PD data requires computing comparison metrics among large sets of PDs, with metrics which are accurate, theoretically sound, and fast to compute. Especially for denser multi-dimensional PDs, such comparison metrics are lacking. While on the one hand, Wasserstein-type distances have high accuracy and theoretical guarantees, they incur high computational cost. On the other hand, distances between vectorizations such as Persistence Statistics (PS)s have lower computational cost, but lack the accuracy guarantees and in general they are not guaranteed to distinguish PDs (i.e. the two PS vectors of different PDs may be equal). In this work we introduce a class of pseudodistances called Extended Topological Pseudodistances (ETD)s, which have tunable complexity, and can approximate Sliced and classical Wasserstein distances at the high-complexity extreme, while being computationally lighter and close to Persistence Statistics at the lower complexity extreme, and thus allow users to interpolate between the two metrics. We build theoretical comparisons to show how to fit our new distances at an intermediate level between persistence vectorizations and Wasserstein distances. We also experimentally verify that ETDs outperform PSs in terms of accuracy and outperform Wasserstein and Sliced Wasserstein distances in terms of computational complexity.

It is a manuscript for results about entropic central limit theorem for independent sum under finite Poincar\'e constant conditions.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司