亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We try to clarify the relationship between interleaving concurrency and true concurrency, based on the very recent work on truly concurrent process algebra, especially, giving models of true concurrency, such as event structure, Petri net and concurrent Kleene algebra, (truly concurrent) process algebra foundations.

相關內容

 Processing 是一門開源編程語言和與之配套的集成開發環境(IDE)的名稱。Processing 在電子藝術和視覺設計社區被用來教授編程基礎,并運用于大量的新媒體和互動藝術作品中。

Strategic product placement can have a strong influence on customer purchase behavior in physical stores as well as online platforms. Motivated by this, we consider the problem of optimizing the placement of substitutable products in designated display locations to maximize the expected revenue of the seller. We model the customer behavior as a two-stage process: first, the customer visits a subset of display locations according to a browsing distribution; second, the customer chooses at most one product from the displayed products at those locations according to a choice model. Our goal is to design a general algorithm that can select and place the products optimally for any browsing distribution and choice model, and we call this the Placement problem. We give a randomized algorithm that utilizes an $\alpha$-approximate algorithm for cardinality constrained assortment optimization and outputs a $\frac{\Theta(\alpha)}{\log m}$-approximate solution (in expectation) for Placement with $m$ display locations, i.e., our algorithm outputs a solution with value at least $\frac{\Omega(\alpha)}{\log m}$ factor of the optimal and this is tight in the worst case. We also give algorithms with stronger guarantees in some special cases. In particular, we give a deterministic $\frac{\Omega(1)}{\log m}$-approximation algorithm for the Markov choice model, and a tight $(1-1/e)$-approximation algorithm for the problem when products have identical prices.

The study of persistence rests largely on the result that any finitely-indexed persistence module of finite-dimensional vector spaces admits an interval decomposition -- that is, a decomposition as a direct sum of interval modules. This result fails if we replace vector spaces with modules over more general coefficient rings. For example, not every persistence module of finitely-generated free abelian groups admits an interval decomposition. Nevertheless, many interesting examples of such persistence modules have been empirically observed to decompose into intervals. Due to the prevalence of these modules in applied and theoretical settings, it is important to understand the conditions under which interval decomposition is possible. We provide a necessary and sufficient condition, and a polynomial-time algorithm to either (a) compute an interval decomposition of a persistence module of free abelian groups, or (b) certify that no such decomposition exists. This complements earlier work, which characterizes filtered topological spaces whose persistence diagrams are independent of the choice of ground field.

An important aspect in developing language models that interact with humans is aligning their behavior to be useful and unharmful for their human users. This is usually achieved by tuning the model in a way that enhances desired behaviors and inhibits undesired ones, a process referred to as alignment. In this paper, we propose a theoretical approach called Behavior Expectation Bounds (BEB) which allows us to formally investigate several inherent characteristics and limitations of alignment in large language models. Importantly, we prove that within the limits of this framework, for any behavior that has a finite probability of being exhibited by the model, there exist prompts that can trigger the model into outputting this behavior, with probability that increases with the length of the prompt. This implies that any alignment process that attenuates an undesired behavior but does not remove it altogether, is not safe against adversarial prompting attacks. Furthermore, our framework hints at the mechanism by which leading alignment approaches such as reinforcement learning from human feedback make the LLM prone to being prompted into the undesired behaviors. This theoretical result is being experimentally demonstrated in large scale by the so called contemporary "chatGPT jailbreaks", where adversarial users trick the LLM into breaking its alignment guardrails by triggering it into acting as a malicious persona. Our results expose fundamental limitations in alignment of LLMs and bring to the forefront the need to devise reliable mechanisms for ensuring AI safety.

Recent work introduced an algorithm and tool in Coq to automatically repair broken proofs in response to changes that correspond to type equivalences. We report on case studies for manual proof repair across type equivalences using an adaptation of this algorithm in Cubical Agda. Crucially, these case studies capture proof repair use cases that were challenging to impossible in prior work in Coq due to type theoretic limitations, highlighting three benefits to working in Cubical Agda: (1) quotient types enrich the space of repairs we can express as type equivalences, (2) dependent path equality makes it possible to internally state and prove correctness of repaired proofs relative to the original proofs, and (3) functional extensionality and transport make it simple to move between slow and fast computations after repair. They also highlight two challenges of working in Cubical Agda, namely those introduced by: (1) lack of tools for automation, and (2) proof relevance, especially as it interacts with definitional equality. We detail these benefits and challenges in hopes to set the stage for later work in proof repair bridging the benefits of both languages.

Previous efforts on reconfigurable analog circuits mostly focused on specialized analog circuits, produced through careful co-design, or on highly reconfigurable, but relatively resource inefficient, accelerators that implement analog compute paradigms. This work deals with an intermediate point in the design space: Specialized reconfigurable circuits for analog compute paradigms. This class of circuits requires new methodologies for performing co-design, as prior techniques are typically highly specialized to conventional circuit classes (e.g., filters, ADCs). In this context, we present Ark, a programming language for describing analog compute paradigms. Ark enables progressive incorporation of analog behaviors into computations, and deploys a validator and dynamical system compiler for verifying and simulating computations. We use Ark to codify the design space for three different exemplary circuit design problems, and demonstrate that Ark helps exploring design trade-offs and evaluating the impact of nonidealities to the computation.

We present a study on a repeated delegated choice problem, which is the first to consider an online learning variant of Kleinberg and Kleinberg, EC'18. In this model, a principal interacts repeatedly with an agent who possesses an exogenous set of solutions to search for efficient ones. Each solution can yield varying utility for both the principal and the agent, and the agent may propose a solution to maximize its own utility in a selfish manner. To mitigate this behavior, the principal announces an eligible set which screens out a certain set of solutions. The principal, however, does not have any information on the distribution of solutions in advance. Therefore, the principal dynamically announces various eligible sets to efficiently learn the distribution. The principal's objective is to minimize cumulative regret compared to the optimal eligible set in hindsight. We explore two dimensions of the problem setup, whether the agent behaves myopically or strategizes across the rounds, and whether the solutions yield deterministic or stochastic utility. Our analysis mainly characterizes some regimes under which the principal can recover the sublinear regret, thereby shedding light on the rise and fall of the repeated delegation procedure in various regimes.

Rapid advancements in artificial intelligence (AI) have sparked growing concerns among experts, policymakers, and world leaders regarding the potential for increasingly advanced AI systems to pose catastrophic risks. Although numerous risks have been detailed separately, there is a pressing need for a systematic discussion and illustration of the potential dangers to better inform efforts to mitigate them. This paper provides an overview of the main sources of catastrophic AI risks, which we organize into four categories: malicious use, in which individuals or groups intentionally use AIs to cause harm; AI race, in which competitive environments compel actors to deploy unsafe AIs or cede control to AIs; organizational risks, highlighting how human factors and complex systems can increase the chances of catastrophic accidents; and rogue AIs, describing the inherent difficulty in controlling agents far more intelligent than humans. For each category of risk, we describe specific hazards, present illustrative stories, envision ideal scenarios, and propose practical suggestions for mitigating these dangers. Our goal is to foster a comprehensive understanding of these risks and inspire collective and proactive efforts to ensure that AIs are developed and deployed in a safe manner. Ultimately, we hope this will allow us to realize the benefits of this powerful technology while minimizing the potential for catastrophic outcomes.

We study the optimal order (or sequence) of contracting a tensor network with a minimal computational cost. We conclude 2 different versions of this optimal sequence: that minimize the operation number (OMS) and that minimize the time complexity (CMS). Existing results only shows that OMS is NP-hard, but no conclusion on CMS problem. In this work, we firstly reduce CMS to CMS-0, which is a sub-problem of CMS with no free indices. Then we prove that CMS is easier than OMS, both in general and in tree cases. Last but not least, we prove that CMS is still NP-hard. Based on our results, we have built up relationships of hardness of different tensor network contraction problems.

The concept of causality plays an important role in human cognition . In the past few decades, causal inference has been well developed in many fields, such as computer science, medicine, economics, and education. With the advancement of deep learning techniques, it has been increasingly used in causal inference against counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective optimization functions to estimate counterfactual data unbiasedly based on the different optimization methods. This paper focuses on the survey of the deep causal models, and its core contributions are as follows: 1) we provide relevant metrics under multiple treatments and continuous-dose treatment; 2) we incorporate a comprehensive overview of deep causal models from both temporal development and method classification perspectives; 3) we assist a detailed and comprehensive classification and analysis of relevant datasets and source code.

Transformers have achieved great success in many artificial intelligence fields, such as natural language processing, computer vision, and audio processing. Therefore, it is natural to attract lots of interest from academic and industry researchers. Up to the present, a great variety of Transformer variants (a.k.a. X-formers) have been proposed, however, a systematic and comprehensive literature review on these Transformer variants is still missing. In this survey, we provide a comprehensive review of various X-formers. We first briefly introduce the vanilla Transformer and then propose a new taxonomy of X-formers. Next, we introduce the various X-formers from three perspectives: architectural modification, pre-training, and applications. Finally, we outline some potential directions for future research.

北京阿比特科技有限公司