Widespread conspiracy theories may significantly impact our society. This paper focuses on the QAnon conspiracy theory, a consequential conspiracy theory that started on and disseminated successfully through social media. Our work characterizes how Reddit users who have participated in QAnon-focused subreddits engage in activities on the platform, especially outside their own communities. Using a large-scale Reddit moderation action against QAnon-related activities in 2018 as the source, we identified 13,000 users active in the early QAnon communities. We collected the 2.1 million submissions and 10.8 million comments posted by these users across all of Reddit from October 2016 to January 2021. The majority of these users were only active after the emergence of the QAnon Conspiracy theory and decreased in activity after Reddit's 2018 QAnon ban. A qualitative analysis of a sample of 915 subreddits where the "QAnon-enthusiastic" users were especially active shows that they participated in a diverse range of subreddits, often of unrelated topics to QAnon. However, most of the users' submissions were concentrated in subreddits that have sympathetic attitudes towards the conspiracy theory, characterized by discussions that were pro-Trump, or emphasized unconstricted behavior (often anti-establishment and anti-interventionist). Further study of a sample of 1,571 of these submissions indicates that most consist of links from low-quality sources, bringing potential harm to the broader Reddit community. These results point to the likelihood that the activities of early QAnon users on Reddit were dedicated and committed to the conspiracy, providing implications on both platform moderation design and future research.
Assessing advancements of technology is essential for creating science and technology policies and making informed investments in the technology market. However, current methods primarily focus on the characteristics of the technologies themselves, making it difficult to accurately assess technologies across various fields and generations. To address this challenge, we propose a novel approach that uses bibliometrics, specifically literature citation networks, to measure changes in knowledge flow throughout the evolution of technology. This method can identify diverse trends in technology development and is an effective tool for evaluating technological advancements. We demonstrate its accuracy and applicability by applying it to mobile communication technology and comparing its quantitative results with other assessment methods. Our work provides critical support for assessing different technical routes and formulating technology policy.
Conversational search systems can improve user experience in digital libraries by facilitating a natural and intuitive way to interact with library content. However, most conversational search systems are limited to performing simple tasks and controlling smart devices. Therefore, there is a need for systems that can accurately understand the user's information requirements and perform the appropriate search activity. Prior research on intelligent systems suggested that it is possible to comprehend the functional aspect of discourse (search intent) by identifying the speech acts in user dialogues. In this work, we automatically identify the speech acts associated with spoken utterances and use them to predict the system-level search actions. First, we conducted a Wizard-of-Oz study to collect data from 75 search sessions. We performed thematic analysis to curate a gold standard dataset -- containing 1,834 utterances and 509 system actions -- of human-system interactions in three information-seeking scenarios. Next, we developed attention-based deep neural networks to understand natural language and predict speech acts. Then, the speech acts were fed to the model to predict the corresponding system-level search actions. We also annotated a second dataset to validate our results. For the two datasets, the best-performing classification model achieved maximum accuracy of 90.2% and 72.7% for speech act classification and 58.8% and 61.1%, respectively, for search act classification.
Decentralized learning enables the training of deep learning models over large distributed datasets generated at different locations, without the need for a central server. However, in practical scenarios, the data distribution across these devices can be significantly different, leading to a degradation in model performance. In this paper, we focus on designing a decentralized learning algorithm that is less susceptible to variations in data distribution across devices. We propose Global Update Tracking (GUT), a novel tracking-based method that aims to mitigate the impact of heterogeneous data in decentralized learning without introducing any communication overhead. We demonstrate the effectiveness of the proposed technique through an exhaustive set of experiments on various Computer Vision datasets (CIFAR-10, CIFAR-100, Fashion MNIST, and ImageNette), model architectures, and network topologies. Our experiments show that the proposed method achieves state-of-the-art performance for decentralized learning on heterogeneous data via a $1-6\%$ improvement in test accuracy compared to other existing techniques.
Smart contracts manage blockchain assets. While smart contracts embody business processes, their platforms are not process-aware. Mainstream smart contract programming languages such as Solidity do not have explicit notions of roles, action dependencies, and time. Instead, these concepts are implemented in program code. This makes it very hard to design and analyze smart contracts. We argue that DCR graphs are a suitable formalization tool for smart contracts because they explicitly and visually capture these features. We utilize this expressiveness to show that many common high-level design patterns in smart-contract applications can be naturally modeled this way. Applying these patterns shows that DCR graphs facilitate the development and analysis of correct and reliable smart contracts by providing a clear and easy-to-understand specification.
There are indications in literature that women do not engage with security and privacy (SP) technologies, meant to keep them safe online, in the same way as men do. To better understand this gender gap, we conduct an online survey with N=604 U.K. participants, to elicit SP advice source preference and usage of SP methods and technologies. We find evidence of un-equal SP access and participation. In particular, advice from intimate and social connections (ISC) is more prevalent among women, while online content is preferred by men. ISC do not closely associate with nor predict the use of SP technologies, whereas online sources (such as online forums, reviews, specialist pages and technology adverts) and training do. Men are also more likely to use multiple advice sources, that enhances the likelihood of using SP technologies. Women are motivated to approach ISC due to their perceptions of the advisor (such as IT related expertise, experience and trustworthiness) while men approach ISC to evaluate options and seek reassurance for their own practices. This research raises questions about the equity of online safety opportunities and makes recommendations.
With information consumption via online video streaming becoming increasingly popular, misinformation video poses a new threat to the health of the online information ecosystem. Though previous studies have made much progress in detecting misinformation in text and image formats, video-based misinformation brings new and unique challenges to automatic detection systems: 1) high information heterogeneity brought by various modalities, 2) blurred distinction between misleading video manipulation and ubiquitous artistic video editing, and 3) new patterns of misinformation propagation due to the dominant role of recommendation systems on online video platforms. To facilitate research on this challenging task, we conduct this survey to present advances in misinformation video detection research. We first analyze and characterize the misinformation video from three levels including signals, semantics, and intents. Based on the characterization, we systematically review existing works for detection from features of various modalities to techniques for clue integration. We also introduce existing resources including representative datasets and widely used tools. Besides summarizing existing studies, we discuss related areas and outline open issues and future directions to encourage and guide more research on misinformation video detection. Our corresponding public repository is available at //github.com/ICTMCG/Awesome-Misinfo-Video-Detection.
Link recommendation algorithms contribute to shaping human relations of billions of users worldwide in social networks. To maximize relevance, they typically propose connecting users that are similar to each other. This has been found to create information silos, exacerbating the isolation suffered by vulnerable salient groups and perpetuating societal stereotypes. To mitigate these limitations, a significant body of work has been devoted to the implementation of fair link recommendation methods. However, most approaches do not question the ultimate goal of link recommendation algorithms, namely the monetization of users' engagement in intricate business models of data trade. This paper advocates for a diversification of players and purposes of social network platforms, aligned with the pursue of social justice. To illustrate this conceptual goal, we present ERA-Link, a novel link recommendation algorithm based on spectral graph theory that counteracts the systemic societal discrimination suffered by vulnerable groups by explicitly implementing affirmative action. We propose four principled evaluation measures, derived from effective resistance, to quantitatively analyze the behavior of the proposed method and compare it to three alternative approaches. Experiments with synthetic and real-world networks illustrate how ERA-Link generates better outcomes according to all evaluation measures, not only for the vulnerable group but for the whole network. In other words, ERA-Link recommends connections that mitigate the structural discrimination of a vulnerable group, improves social cohesion and increases the social capital of all network users. Furthermore, by promoting the access to a diversity of users, ERA-Link facilitates innovation opportunities.
Over the past decade, domain adaptation has become a widely studied branch of transfer learning that aims to improve performance on target domains by leveraging knowledge from the source domain. Conventional domain adaptation methods often assume access to both source and target domain data simultaneously, which may not be feasible in real-world scenarios due to privacy and confidentiality concerns. As a result, the research of Source-Free Domain Adaptation (SFDA) has drawn growing attention in recent years, which only utilizes the source-trained model and unlabeled target data to adapt to the target domain. Despite the rapid explosion of SFDA work, yet there has no timely and comprehensive survey in the field. To fill this gap, we provide a comprehensive survey of recent advances in SFDA and organize them into a unified categorization scheme based on the framework of transfer learning. Instead of presenting each approach independently, we modularize several components of each method to more clearly illustrate their relationships and mechanics in light of the composite properties of each method. Furthermore, we compare the results of more than 30 representative SFDA methods on three popular classification benchmarks, namely Office-31, Office-home, and VisDA, to explore the effectiveness of various technical routes and the combination effects among them. Additionally, we briefly introduce the applications of SFDA and related fields. Drawing from our analysis of the challenges facing SFDA, we offer some insights into future research directions and potential settings.
AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.
Federated learning (FL) is an emerging, privacy-preserving machine learning paradigm, drawing tremendous attention in both academia and industry. A unique characteristic of FL is heterogeneity, which resides in the various hardware specifications and dynamic states across the participating devices. Theoretically, heterogeneity can exert a huge influence on the FL training process, e.g., causing a device unavailable for training or unable to upload its model updates. Unfortunately, these impacts have never been systematically studied and quantified in existing FL literature. In this paper, we carry out the first empirical study to characterize the impacts of heterogeneity in FL. We collect large-scale data from 136k smartphones that can faithfully reflect heterogeneity in real-world settings. We also build a heterogeneity-aware FL platform that complies with the standard FL protocol but with heterogeneity in consideration. Based on the data and the platform, we conduct extensive experiments to compare the performance of state-of-the-art FL algorithms under heterogeneity-aware and heterogeneity-unaware settings. Results show that heterogeneity causes non-trivial performance degradation in FL, including up to 9.2% accuracy drop, 2.32x lengthened training time, and undermined fairness. Furthermore, we analyze potential impact factors and find that device failure and participant bias are two potential factors for performance degradation. Our study provides insightful implications for FL practitioners. On the one hand, our findings suggest that FL algorithm designers consider necessary heterogeneity during the evaluation. On the other hand, our findings urge system providers to design specific mechanisms to mitigate the impacts of heterogeneity.