The generation of tailored light with multi-core fiber (MCF) lensless microendoscopes is widely used in biomedicine. However, the computer-generated holograms (CGHs) used for such applications are typically generated by iterative algorithms, which demand high computation effort, limiting advanced applications like in vivo optogenetic stimulation and fiber-optic cell manipulation. The random and discrete distribution of the fiber cores induces strong spatial aliasing to the CGHs, hence, an approach that can rapidly generate tailored CGHs for MCFs is highly demanded. We demonstrate a novel phase encoder deep neural network (CoreNet), which can generate accurate tailored CGHs for MCFs at a near video-rate. Simulations show that CoreNet can speed up the computation time by two magnitudes and increase the fidelity of the generated light field compared to the conventional CGH techniques. For the first time, real-time generated tailored CGHs are on-the-fly loaded to the phase-only SLM for dynamic light fields generation through the MCF microendoscope in experiments. This paves the avenue for real-time cell rotation and several further applications that require real-time high-fidelity light delivery in biomedicine.
This paper and accompanying Python and C++ Framework is the product of the authors perceived problems with narrow (Discrimination based) AI. (Artificial Intelligence) The Framework attempts to develop a genetic transfer of experience through potential structural expressions using a common regulation/exchange value (energy) to create a model whereby neural architecture and all unit processes are co-dependently developed by genetic and real time signal processing influences; successful routes are defined by stability of the spike distribution per epoch which is influenced by genetically encoded morphological development biases.These principles are aimed towards creating a diverse and robust network that is capable of adapting to general tasks by training within a simulation designed for transfer learning to other mediums at scale.
As a structured prediction task, scene graph generation aims to build a visually-grounded scene graph to explicitly model objects and their relationships in an input image. Currently, the mean field variational Bayesian framework is the de facto methodology used by the existing methods, in which the unconstrained inference step is often implemented by a message passing neural network. However, such formulation fails to explore other inference strategies, and largely ignores the more general constrained optimization models. In this paper, we present a constrained structure learning method, for which an explicit constrained variational inference objective is proposed. Instead of applying the ubiquitous message-passing strategy, a generic constrained optimization method - entropic mirror descent - is utilized to solve the constrained variational inference step. We validate the proposed generic model on various popular scene graph generation benchmarks and show that it outperforms the state-of-the-art methods.
Generative models for graphs have been actively studied for decades, and they have a wide range of applications. Recently, learning-based graph generation that reproduces real-world graphs has gradually attracted the attention of many researchers. Several generative models that utilize modern machine learning technologies have been proposed, though a conditional generation of general graphs is less explored in the field. In this paper, we propose a generative model that allows us to tune a value of a global-level structural feature as a condition. Our model called GraphTune enables to tune a value of any structural feature of generated graphs using Long Short Term Memory (LSTM) and Conditional Variational AutoEncoder (CVAE). We performed comparative evaluations of GraphTune and conventional models with a real graph dataset. The evaluations show that GraphTune enables to clearly tune a value of a global-level structural feature compared to the conventional models.
Controllable generation is one of the key requirements for successful adoption of deep generative models in real-world applications, but it still remains as a great challenge. In particular, the compositional ability to generate novel concept combinations is out of reach for most current models. In this work, we use energy-based models (EBMs) to handle compositional generation over a set of attributes. To make them scalable to high-resolution image generation, we introduce an EBM in the latent space of a pre-trained generative model such as StyleGAN. We propose a novel EBM formulation representing the joint distribution of data and attributes together, and we show how sampling from it is formulated as solving an ordinary differential equation (ODE). Given a pre-trained generator, all we need for controllable generation is to train an attribute classifier. Sampling with ODEs is done efficiently in the latent space and is robust to hyperparameters. Thus, our method is simple, fast to train, and efficient to sample. Experimental results show that our method outperforms the state-of-the-art in both conditional sampling and sequential editing. In compositional generation, our method excels at zero-shot generation of unseen attribute combinations. Also, by composing energy functions with logical operators, this work is the first to achieve such compositionality in generating photo-realistic images of resolution 1024x1024.
The field of Text-to-Speech has experienced huge improvements last years benefiting from deep learning techniques. Producing realistic speech becomes possible now. As a consequence, the research on the control of the expressiveness, allowing to generate speech in different styles or manners, has attracted increasing attention lately. Systems able to control style have been developed and show impressive results. However the control parameters often consist of latent variables and remain complex to interpret. In this paper, we analyze and compare different latent spaces and obtain an interpretation of their influence on expressive speech. This will enable the possibility to build controllable speech synthesis systems with an understandable behaviour.
Automatic generation of paraphrases from a given sentence is an important yet challenging task in natural language processing (NLP), and plays a key role in a number of applications such as question answering, search, and dialogue. In this paper, we present a deep reinforcement learning approach to paraphrase generation. Specifically, we propose a new framework for the task, which consists of a \textit{generator} and an \textit{evaluator}, both of which are learned from data. The generator, built as a sequence-to-sequence learning model, can produce paraphrases given a sentence. The evaluator, constructed as a deep matching model, can judge whether two sentences are paraphrases of each other. The generator is first trained by deep learning and then further fine-tuned by reinforcement learning in which the reward is given by the evaluator. For the learning of the evaluator, we propose two methods based on supervised learning and inverse reinforcement learning respectively, depending on the type of available training data. Empirical study shows that the learned evaluator can guide the generator to produce more accurate paraphrases. Experimental results demonstrate the proposed models (the generators) outperform the state-of-the-art methods in paraphrase generation in both automatic evaluation and human evaluation.
The ever-growing interest witnessed in the acquisition and development of unmanned aerial vehicles (UAVs), commonly known as drones in the past few years, has brought generation of a very promising and effective technology. Because of their characteristic of small size and fast deployment, UAVs have shown their effectiveness in collecting data over unreachable areas and restricted coverage zones. Moreover, their flexible-defined capacity enables them to collect information with a very high level of detail, leading to high resolution images. UAVs mainly served in military scenario. However, in the last decade, they have being broadly adopted in civilian applications as well. The task of aerial surveillance and situation awareness is usually completed by integrating intelligence, surveillance, observation, and navigation systems, all interacting in the same operational framework. To build this capability, UAV's are well suited tools that can be equipped with a wide variety of sensors, such as cameras or radars. Deep learning has been widely recognized as a prominent approach in different computer vision applications. Specifically, one-stage object detector and two-stage object detector are regarded as the most important two groups of Convolutional Neural Network based object detection methods. One-stage object detector could usually outperform two-stage object detector in speed; however, it normally trails in detection accuracy, compared with two-stage object detectors. In this study, focal loss based RetinaNet, which works as one-stage object detector, is utilized to be able to well match the speed of regular one-stage detectors and also defeat two-stage detectors in accuracy, for UAV based object detection. State-of-the-art performance result has been showed on the UAV captured image dataset-Stanford Drone Dataset (SDD).
Current top-performing object detectors depend on deep CNN backbones, such as ResNet-101 and Inception, benefiting from their powerful feature representations but suffering from high computational costs. Conversely, some lightweight model based detectors fulfil real time processing, while their accuracies are often criticized. In this paper, we explore an alternative to build a fast and accurate detector by strengthening lightweight features using a hand-crafted mechanism. Inspired by the structure of Receptive Fields (RFs) in human visual systems, we propose a novel RF Block (RFB) module, which takes the relationship between the size and eccentricity of RFs into account, to enhance the feature discriminability and robustness. We further assemble RFB to the top of SSD, constructing the RFB Net detector. To evaluate its effectiveness, experiments are conducted on two major benchmarks and the results show that RFB Net is able to reach the performance of advanced very deep detectors while keeping the real-time speed. Code is available at //github.com/ruinmessi/RFBNet.
Recently introduced generative adversarial network (GAN) has been shown numerous promising results to generate realistic samples. The essential task of GAN is to control the features of samples generated from a random distribution. While the current GAN structures, such as conditional GAN, successfully generate samples with desired major features, they often fail to produce detailed features that bring specific differences among samples. To overcome this limitation, here we propose a controllable GAN (ControlGAN) structure. By separating a feature classifier from a discriminator, the generator of ControlGAN is designed to learn generating synthetic samples with the specific detailed features. Evaluated with multiple image datasets, ControlGAN shows a power to generate improved samples with well-controlled features. Furthermore, we demonstrate that ControlGAN can generate intermediate features and opposite features for interpolated and extrapolated input labels that are not used in the training process. It implies that ControlGAN can significantly contribute to the variety of generated samples.
We propose a conditional non-autoregressive neural sequence model based on iterative refinement. The proposed model is designed based on the principles of latent variable models and denoising autoencoders, and is generally applicable to any sequence generation task. We extensively evaluate the proposed model on machine translation (En-De and En-Ro) and image caption generation, and observe that it significantly speeds up decoding while maintaining the generation quality comparable to the autoregressive counterpart.