亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently, Apers and Piddock [TQC '23] strengthened the natural connection between quantum walks and electrical networks by considering Kirchhoff's Law and Ohm's Law. In this work, we develop the multidimensional electrical network by defining Kirchhoff's Alternative Law and Ohm's Alternative Law based on the novel multidimensional quantum walk framework by Jeffery and Zur [STOC '23]. This multidimensional electrical network allows us to sample from the electrical flow obtained via a multidimensional quantum walk algorithm and achieve exponential quantum-classical separations for certain graph problems. We first use this framework to find a marked vertex in one-dimensional random hierarchical graphs as defined by Balasubramanian, Li, and Harrow [arXiv '23]. In this work, they generalised the well known exponential quantum-classical separation of the welded tree problem by Childs, Cleve, Deotto, Farhi, Gutmann, and Spielman [STOC '03] to random hierarchical graphs. Our result partially recovers their results with an arguably simpler analysis. Furthermore, by constructing a $3$-regular graph based on welded trees, this framework also allows us to show an exponential speedup for the pathfinding problem. This solves one of the open problems by Li [arXiv '23], where they construct a non-regular graph and use the degree information to achieve a similar speedup. In analogy to the connection between the (edge-vertex) incidence matrix of a graph and Kirchhoff's Law and Ohm's Law in an electrical network, we also rebuild the connection between the alternative incidence matrix and Kirchhoff's Alternative Law and Ohm's Alternative Law. By establishing this connection, we expect that the multidimensional electrical network could have more applications beyond quantum walks.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Benefitting from the vast spatial degrees of freedom, the amalgamation of integrated sensing and communication (ISAC) and massive multiple-input multiple-output (MIMO) is expected to simultaneously improve spectral and energy efficiencies as well as the sensing capability. However, a large number of antennas deployed in massive MIMO-ISAC raises critical challenges in acquiring both accurate channel state information and target parameter information. To overcome these two challenges with a unified framework, we first analyze their underlying system models and then propose a novel tensor-based approach that addresses both the channel estimation and target sensing problems. Specifically, by parameterizing the high-dimensional communication channel exploiting a small number of physical parameters, we associate the channel state information with the sensing parameters of targets in terms of angular, delay, and Doppler dimensions. Then, we propose a shared training pattern adopting the same time-frequency resources such that both the channel estimation and target parameter estimation can be formulated as a canonical polyadic decomposition problem with a similar mathematical expression. On this basis, we first investigate the uniqueness condition of the tensor factorization and the maximum number of resolvable targets by utilizing the specific Vandermonde

We address the choice of penalty parameter in the Smoothness-Penalized Deconvolution (SPeD) method of estimating a probability density under additive measurement error. Cross-validation gives an unbiased estimate of the risk (for the present sample size n) with a given penalty parameter, and this function can be minimized as a function of the penalty parameter. Least-squares cross-validation, which has been proposed for the similar Deconvoluting Kernel Density Estimator (DKDE), performs quite poorly for SPeD. We instead estimate the risk function for a smaller sample size n_1 < n with a given penalty parameter, using this to choose the penalty parameter for sample size n_1, and then use the asymptotics of the optimal penalty parameter to choose for sample size n. In a simulation study, we find that this has dramatically better performance than cross-validation, is an improvement over a SURE-type method previously proposed for this estimator, and compares favorably to the classic DKDE with its recommended plug-in method. We prove that the maximum error in estimating the risk function is of smaller order than its optimal rate of convergence.

We propose and evaluate an automated pipeline for discovering significant topics from legal decision texts by passing features synthesized with topic models through penalised regressions and post-selection significance tests. The method identifies case topics significantly correlated with outcomes, topic-word distributions which can be manually-interpreted to gain insights about significant topics, and case-topic weights which can be used to identify representative cases for each topic. We demonstrate the method on a new dataset of domain name disputes and a canonical dataset of European Court of Human Rights violation cases. Topic models based on latent semantic analysis as well as language model embeddings are evaluated. We show that topics derived by the pipeline are consistent with legal doctrines in both areas and can be useful in other related legal analysis tasks.

The emergence of ChatGPT and other large language models (LLMs) has greatly increased interest in utilizing LLMs as therapists to support individuals struggling with mental health challenges. However, due to the lack of systematic studies, our understanding of how LLM therapists behave, i.e., ways in which they respond to clients, is significantly limited. Understanding their behavior across a wide range of clients and situations is crucial to accurately assess their capabilities and limitations in the high-risk setting of mental health, where undesirable behaviors can lead to severe consequences. In this paper, we propose BOLT, a novel computational framework to study the conversational behavior of LLMs when employed as therapists. We develop an in-context learning method to quantitatively measure the behavior of LLMs based on 13 different psychotherapy techniques including reflections, questions, solutions, normalizing, and psychoeducation. Subsequently, we compare the behavior of LLM therapists against that of high- and low-quality human therapy, and study how their behavior can be modulated to better reflect behaviors observed in high-quality therapy. Our analysis of GPT and Llama-variants reveals that these LLMs often resemble behaviors more commonly exhibited in low-quality therapy rather than high-quality therapy, such as offering a higher degree of problem-solving advice when clients share emotions, which is against typical recommendations. At the same time, unlike low-quality therapy, LLMs reflect significantly more upon clients' needs and strengths. Our analysis framework suggests that despite the ability of LLMs to generate anecdotal examples that appear similar to human therapists, LLM therapists are currently not fully consistent with high-quality care, and thus require additional research to ensure quality care.

Speech emotion recognition (SER) has received a great deal of attention in recent years in the context of spontaneous conversations. While there have been notable results on datasets like the well known corpus of naturalistic dyadic conversations, IEMOCAP, for both the case of categorical and dimensional emotions, there are few papers which try to predict both paradigms at the same time. Therefore, in this work, we aim to highlight the performance contribution of multi-task learning by proposing a multi-task, multi-modal system that predicts categorical and dimensional emotions. The results emphasise the importance of cross-regularisation between the two types of emotions. Our approach consists of a multi-task, multi-modal architecture that uses parallel feature refinement through self-attention for the feature of each modality. In order to fuse the features, our model introduces a set of learnable bridge tokens that merge the acoustic and linguistic features with the help of cross-attention. Our experiments for categorical emotions on 10-fold validation yield results comparable to the current state-of-the-art. In our configuration, our multi-task approach provides better results compared to learning each paradigm separately. On top of that, our best performing model achieves a high result for valence compared to the previous multi-task experiments.

Scientists are adopting new approaches to scale up their activities and goals. Progress in neurotechnologies, artificial intelligence, automation, and tools for collaboration promises new bursts of discoveries. However, compared to other disciplines and the industry, neuroscience laboratories have been slow to adopt key technologies to support collaboration, reproducibility, and automation. Drawing on progress in other fields, we define a roadmap for implementing automated research workflows for diverse research teams. We propose establishing a five-level capability maturity model for operations in neuroscience research. Achieving higher levels of operational maturity requires new technology-enabled methodologies, which we describe as ``SciOps''. The maturity model provides guidelines for evaluating and upgrading operations in multidisciplinary neuroscience teams.

Graph Convolutional Networks (GCNs) have been widely applied in various fields due to their significant power on processing graph-structured data. Typical GCN and its variants work under a homophily assumption (i.e., nodes with same class are prone to connect to each other), while ignoring the heterophily which exists in many real-world networks (i.e., nodes with different classes tend to form edges). Existing methods deal with heterophily by mainly aggregating higher-order neighborhoods or combing the immediate representations, which leads to noise and irrelevant information in the result. But these methods did not change the propagation mechanism which works under homophily assumption (that is a fundamental part of GCNs). This makes it difficult to distinguish the representation of nodes from different classes. To address this problem, in this paper we design a novel propagation mechanism, which can automatically change the propagation and aggregation process according to homophily or heterophily between node pairs. To adaptively learn the propagation process, we introduce two measurements of homophily degree between node pairs, which is learned based on topological and attribute information, respectively. Then we incorporate the learnable homophily degree into the graph convolution framework, which is trained in an end-to-end schema, enabling it to go beyond the assumption of homophily. More importantly, we theoretically prove that our model can constrain the similarity of representations between nodes according to their homophily degree. Experiments on seven real-world datasets demonstrate that this new approach outperforms the state-of-the-art methods under heterophily or low homophily, and gains competitive performance under homophily.

Graph Neural Networks (GNNs) have received considerable attention on graph-structured data learning for a wide variety of tasks. The well-designed propagation mechanism which has been demonstrated effective is the most fundamental part of GNNs. Although most of GNNs basically follow a message passing manner, litter effort has been made to discover and analyze their essential relations. In this paper, we establish a surprising connection between different propagation mechanisms with a unified optimization problem, showing that despite the proliferation of various GNNs, in fact, their proposed propagation mechanisms are the optimal solution optimizing a feature fitting function over a wide class of graph kernels with a graph regularization term. Our proposed unified optimization framework, summarizing the commonalities between several of the most representative GNNs, not only provides a macroscopic view on surveying the relations between different GNNs, but also further opens up new opportunities for flexibly designing new GNNs. With the proposed framework, we discover that existing works usually utilize naive graph convolutional kernels for feature fitting function, and we further develop two novel objective functions considering adjustable graph kernels showing low-pass or high-pass filtering capabilities respectively. Moreover, we provide the convergence proofs and expressive power comparisons for the proposed models. Extensive experiments on benchmark datasets clearly show that the proposed GNNs not only outperform the state-of-the-art methods but also have good ability to alleviate over-smoothing, and further verify the feasibility for designing GNNs with our unified optimization framework.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

Detecting carried objects is one of the requirements for developing systems to reason about activities involving people and objects. We present an approach to detect carried objects from a single video frame with a novel method that incorporates features from multiple scales. Initially, a foreground mask in a video frame is segmented into multi-scale superpixels. Then the human-like regions in the segmented area are identified by matching a set of extracted features from superpixels against learned features in a codebook. A carried object probability map is generated using the complement of the matching probabilities of superpixels to human-like regions and background information. A group of superpixels with high carried object probability and strong edge support is then merged to obtain the shape of the carried object. We applied our method to two challenging datasets, and results show that our method is competitive with or better than the state-of-the-art.

北京阿比特科技有限公司