亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We propose a method to measure the similarity of papers and authors by simulating a literature search procedure on citation networks, which is an information retrieval inspired conceptualization of similarity. This transition probability (TP) based approach does not require a curated classification system, avoids clustering complications, and provides a continuous measure of similarity. We perform testing scenarios to explore several versions of the general TP concept and the Node2vec machine-learning technique. We found that TP measures outperform Node2vec in mapping the macroscopic structure of fields. The paper provides a general discussion of how to implement TP similarity measurement, with a particular focus on how to utilize publication-level information to approximate the research interest similarity of individual scientists. This paper is accompanied by a Python package capable of calculating all the tested metrics.

相關內容

Policy Mirror Descent (PMD) stands as a versatile algorithmic framework encompassing several seminal policy gradient algorithms such as natural policy gradient, with connections with state-of-the-art reinforcement learning (RL) algorithms such as TRPO and PPO. PMD can be seen as a soft Policy Iteration algorithm implementing regularized 1-step greedy policy improvement. However, 1-step greedy policies might not be the best choice and recent remarkable empirical successes in RL such as AlphaGo and AlphaZero have demonstrated that greedy approaches with respect to multiple steps outperform their 1-step counterpart. In this work, we propose a new class of PMD algorithms called $h$-PMD which incorporates multi-step greedy policy improvement with lookahead depth $h$ to the PMD update rule. To solve discounted infinite horizon Markov Decision Processes with discount factor $\gamma$, we show that $h$-PMD which generalizes the standard PMD enjoys a faster dimension-free $\gamma^h$-linear convergence rate, contingent on the computation of multi-step greedy policies. We propose an inexact version of $h$-PMD where lookahead action values are estimated. Under a generative model, we establish a sample complexity for $h$-PMD which improves over prior work. Finally, we extend our result to linear function approximation to scale to large state spaces. Under suitable assumptions, our sample complexity only involves dependence on the dimension of the feature map space instead of the state space size.

We introduce Dynamic Dropout, a novel regularization technique designed to enhance the training efficiency of Transformer models by dynamically adjusting the dropout rate based on training epochs or validation loss improvements. This approach addresses the challenge of balancing regularization and model capacity, which is crucial for achieving fast convergence and high performance. Our method involves modifying the GPT model to accept a variable dropout rate and updating dropout layers during training using schedules such as linear decay, exponential decay, and validation loss-based adjustments. Extensive experiments on the Shakespeare\_char dataset demonstrate that Dynamic Dropout significantly accelerates training and improves inference efficiency compared to a baseline model with a fixed dropout rate. The validation loss-based adjustment schedule provided the best overall performance, highlighting the potential of Dynamic Dropout as a valuable technique for training large-scale Transformer models.

Recent advances in large language models (LLMs) have blurred the boundary of high-quality text generation between humans and machines, which is favorable for generative text steganography. While, current advanced steganographic mapping is not suitable for LLMs since most users are restricted to accessing only the black-box API or user interface of the LLMs, thereby lacking access to the training vocabulary and its sampling probabilities. In this paper, we explore a black-box generative text steganographic method based on the user interfaces of large language models, which is called LLM-Stega. The main goal of LLM-Stega is that the secure covert communication between Alice (sender) and Bob (receiver) is conducted by using the user interfaces of LLMs. Specifically, We first construct a keyword set and design a new encrypted steganographic mapping to embed secret messages. Furthermore, to guarantee accurate extraction of secret messages and rich semantics of generated stego texts, an optimization mechanism based on reject sampling is proposed. Comprehensive experiments demonstrate that the proposed LLM-Stega outperforms current state-of-the-art methods.

This paper delves into the continuous post-training optimization methods for small language models, and proposes a continuous post-training alignment data construction method for small language models. The core of this method is based on the data guidance of large models, optimizing the diversity and accuracy of alignment data. In addition, to verify the effectiveness of the methods in this paper, we used Qwen2-0.5B-Instruct model as the baseline model for small language models, using the alignment dataset constructed by our proposed method, we trained and compared several groups of experiments, including SFT (Supervised Fine Tuning) post-training experiment and KTO (Kahneman Tversky optimization) post-training experiment, as well as SFT-KTO two-stage post-training experiment and model weight fusion experiment. Finally, we evaluated and analyzed the performance of post-training models, and confirmed that the continuous post-training optimization method proposed by us can significantly improve the performance of small language models.

We provide the first analysis of (deferred acceptance) clock auctions in the learning-augmented framework. These auctions satisfy a unique list of appealing properties, including obvious strategyproofness, transparency, and unconditional winner privacy, making them particularly well-suited for real-world applications. However, early work that evaluated their performance from a worst-case analysis perspective concluded that no deterministic clock auction with $n$ bidders can achieve a $O(\log^{1-\epsilon} n)$ approximation of the optimal social welfare for any $\epsilon>0$, even in very simple settings. This overly pessimistic impossibility result heavily depends on the assumption that the designer has no information regarding the bidders' values. Leveraging the learning-augmented framework, we instead consider a designer equipped with some (machine-learned) advice regarding the optimal solution; this advice can provide useful guidance if accurate, but it may be unreliable. Our main results are learning-augmented clock auctions that use this advice to achieve much stronger guarantees whenever the advice is accurate (consistency), while maintaining worst-case guarantees even if this advice is arbitrarily inaccurate (robustness). Our first clock auction achieves the best of both worlds: $(1+\epsilon)$-consistency for any $\epsilon>0$ and $O(\log{n})$ robustness; we also extend this auction to achieve error tolerance. We then consider a much stronger notion of consistency, which we refer to as consistency$^\infty$, and provide auctions that achieves a near-optimal trade-off between consistency$^\infty$ and robustness. Finally, using our impossibility results regarding this trade-off, we prove lower bounds on the ``cost of smoothness,'' i.e., on the achievable robustness if we also require that the performance of the auction degrades smoothly as a function of the prediction error.

This paper investigates supervised fine-tuning of large language models (LLMs) to improve their pedagogical alignment in computing education, addressing concerns that LLMs may hinder learning outcomes. The project utilised a proprietary dataset of 2,500 high quality question/answer pairs from programming course forums, and explores two research questions: the suitability of university course forums in contributing to fine-tuning datasets, and how supervised fine-tuning can improve LLMs' alignment with educational principles such as constructivism. Initial findings suggest benefits in pedagogical alignment of LLMs, with deeper evaluations required.

This study explores the potential of using training dynamics as an automated alternative to human annotation for evaluating the quality of training data. The framework used is Data Maps, which classifies data points into categories such as easy-to-learn, hard-to-learn, and ambiguous (Swayamdipta et al., 2020). Swayamdipta et al. (2020) highlight that difficult-to-learn examples often contain errors, and ambiguous cases significantly impact model training. To confirm the reliability of these findings, we replicated the experiments using a challenging dataset, with a focus on medical question answering. In addition to text comprehension, this field requires the acquisition of detailed medical knowledge, which further complicates the task. A comprehensive evaluation was conducted to assess the feasibility and transferability of the Data Maps framework to the medical domain. The evaluation indicates that the framework is unsuitable for addressing datasets' unique challenges in answering medical questions.

Generalized eigenvalue problems (GEPs) find applications in various fields of science and engineering. For example, principal component analysis, Fisher's discriminant analysis, and canonical correlation analysis are specific instances of GEPs and are widely used in statistical data processing. In this work, we study GEPs under generative priors, assuming that the underlying leading generalized eigenvector lies within the range of a Lipschitz continuous generative model. Under appropriate conditions, we show that any optimal solution to the corresponding optimization problems attains the optimal statistical rate. Moreover, from a computational perspective, we propose an iterative algorithm called the Projected Rayleigh Flow Method (PRFM) to approximate the optimal solution. We theoretically demonstrate that under suitable assumptions, PRFM converges linearly to an estimated vector that achieves the optimal statistical rate. Numerical results are provided to demonstrate the effectiveness of the proposed method.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Triple extraction is an essential task in information extraction for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end triple extraction task for sequence generation. Since generative triple extraction may struggle to capture long-term dependencies and generate unfaithful triples, we introduce a novel model, contrastive triple extraction with a generative transformer. Specifically, we introduce a single shared transformer module for encoder-decoder-based generation. To generate faithful results, we propose a novel triplet contrastive training object. Moreover, we introduce two mechanisms to further improve model performance (i.e., batch-wise dynamic attention-masking and triple-wise calibration). Experimental results on three datasets (i.e., NYT, WebNLG, and MIE) show that our approach achieves better performance than that of baselines.

北京阿比特科技有限公司