This letter studies a vertical federated edge learning (FEEL) system for collaborative objects/human motion recognition by exploiting the distributed integrated sensing and communication (ISAC). In this system, distributed edge devices first send wireless signals to sense targeted objects/human, and then exchange intermediate computed vectors (instead of raw sensing data) for collaborative recognition while preserving data privacy. To boost the spectrum and hardware utilization efficiency for FEEL, we exploit ISAC for both target sensing and data exchange, by employing dedicated frequency-modulated continuous-wave (FMCW) signals at each edge device. Under this setup, we propose a vertical FEEL framework for realizing the recognition based on the collected multi-view wireless sensing data. In this framework, each edge device owns an individual local L-model to transform its sensing data into an intermediate vector with relatively low dimensions, which is then transmitted to a coordinating edge device for final output via a common downstream S-model. By considering a human motion recognition task, experimental results show that our vertical FEEL based approach achieves recognition accuracy up to 98\% with an improvement up to 8\% compared to the benchmarks, including on-device training and horizontal FEEL.
This paper proposes networked dynamics to solve resource allocation problems over time-varying multi-agent networks. The state of each agent represents the amount of used resources (or produced utilities) while the total amount of resources is fixed. The idea is to optimally allocate the resources among the group of agents by minimizing the overall cost function subject to fixed sum of resources. Each agents' information is restricted to its own state and cost function and those of its immediate in-neighbors. This is motivated by distributed applications such as mobile edge-computing, economic dispatch over smart grids, and multi-agent coverage control. This work provides a fast convergent solution (in comparison with linear dynamics) while considering relaxed network connectivity with quantized communication links. The proposed dynamics reaches optimal solution over switching (possibly disconnected) undirected networks as far as their union over some bounded non-overlapping time-intervals has a spanning-tree. We prove feasibility of the solution, uniqueness of the optimal state, and convergence to the optimal value under the proposed dynamics, where the analysis is applicable to similar 1st-order allocation dynamics with strongly sign-preserving nonlinearities, such as actuator saturation.
Graph learning models are critical tools for researchers to explore graph-structured data. To train a capable graph learning model, a conventional method uses sufficient training data to train a graph model on a single device. However, it is prohibitive to do so in real-world scenarios due to privacy concerns. Federated learning provides a feasible solution to address such limitations via introducing various privacy-preserving mechanisms, such as differential privacy on graph edges. Nevertheless, differential privacy in federated graph learning secures the classified information maintained in graphs. It degrades the performances of the graph learning models. In this paper, we investigate how to implement differential privacy on graph edges and observe the performances decreasing in the experiments. We also note that the differential privacy on graph edges introduces noises to perturb graph proximity, which is one of the graph augmentations in graph contrastive learning. Inspired by that, we propose to leverage the advantages of graph contrastive learning to alleviate the performance dropping caused by differential privacy. Extensive experiments are conducted with several representative graph models and widely-used datasets, showing that contrastive learning indeed alleviates the models' performance dropping caused by differential privacy.
Data drift is a thorny challenge when deploying person re-identification (ReID) models into real-world devices, where the data distribution is significantly different from that of the training environment and keeps changing. To tackle this issue, we propose a federated spatial-temporal incremental learning approach, named FedSTIL, which leverages both lifelong learning and federated learning to continuously optimize models deployed on many distributed edge clients. Unlike previous efforts, FedSTIL aims to mine spatial-temporal correlations among the knowledge learnt from different edge clients. Specifically, the edge clients first periodically extract general representations of drifted data to optimize their local models. Then, the learnt knowledge from edge clients will be aggregated by centralized parameter server, where the knowledge will be selectively and attentively distilled from spatial- and temporal-dimension with carefully designed mechanisms. Finally, the distilled informative spatial-temporal knowledge will be sent back to correlated edge clients to further improve the recognition accuracy of each edge client with a lifelong learning method. Extensive experiments on a mixture of five real-world datasets demonstrate that our method outperforms others by nearly 4% in Rank-1 accuracy, while reducing communication cost by 62%. All implementation codes are publicly available on //github.com/MSNLAB/Federated-Lifelong-Person-ReID
Harnessing parity-time (PT) symmetry with balanced gain and loss profiles has created a variety of opportunities in electronics from wireless energy transfer to telemetry sensing and topological defect engineering. However, existing implementations often employ ad-hoc approaches at low operating frequencies and are unable to accommodate large-scale integration. Here, we report a fully integrated realization of PT-symmetry in a standard complementary metal-oxide-semiconductor technology. Our work demonstrates salient PT-symmetry features such as phase transition as well as the ability to manipulate broadband microwave generation and propagation beyond the limitations encountered by exiting schemes. The system shows 2.1 times bandwidth and 30 percentage noise reduction compared to conventional microwave generation in oscillatory mode and displays large non-reciprocal microwave transport from 2.75 to 3.10 gigahertz in non-oscillatory mode due to enhanced nonlinearities. This approach could enrich integrated circuit (IC) design methodology beyond well-established performance limits and enable the use of scalable IC technology to study topological effects in high-dimensional non-Hermitian systems.
A simultaneously transmitting and reflecting intelligent surface (STARS) enabled integrated sensing and communications (ISAC) framework is proposed, where the whole space is divided by STARS into a sensing space and a communication space. A novel sensing-at-STARS structure, where dedicated sensors are installed at the STARS, is proposed to address the significant path loss and clutter interference for sensing. The Cramer-Rao bound (CRB) of the 2-dimension (2D) direction-of-arrivals (DOAs) estimation of the sensing target is derived, which is then minimized subject to the minimum communication requirement. A novel approach is proposed to transform the complicated CRB minimization problem into a trackable modified Fisher information matrix (FIM) optimization problem. Both independent and coupled phase-shift models of STARS are investigated: 1) For the independent phase-shift model, to address the coupling of ISAC waveform and STARS coefficient in the modified FIM, an efficient double-loop iterative algorithm based on the penalty dual decomposition (PDD) framework is conceived; 2) For the coupled phase-shift model, based on the PDD framework, a low complexity alternating optimization algorithm is proposed to tackle coupled phase-shift constants by alternatively optimizing amplitude and phase-shift coefficients in closed-form. Finally, the numerical results demonstrate that: 1) STARS significantly outperforms the conventional RIS in CRB under the communication constraints; 2) The coupled phase-shift model achieves comparable performance to the independent one for low communication requirements or sufficient STARS elements; 3) It is more efficient to increase the number of passive elements of STARS rather than the active elements of the sensor; 4) High sensing accuracy can be achieved by STARS using the practical 2D maximum likelihood estimator compared with the conventional RIS.
Federated learning enables resource-constrained edge compute devices, such as mobile phones and IoT devices, to learn a shared model for prediction, while keeping the training data local. This decentralized approach to train models provides privacy, security, regulatory and economic benefits. In this work, we focus on the statistical challenge of federated learning when local data is non-IID. We first show that the accuracy of federated learning reduces significantly, by up to 55% for neural networks trained for highly skewed non-IID data, where each client device trains only on a single class of data. We further show that this accuracy reduction can be explained by the weight divergence, which can be quantified by the earth mover's distance (EMD) between the distribution over classes on each device and the population distribution. As a solution, we propose a strategy to improve training on non-IID data by creating a small subset of data which is globally shared between all the edge devices. Experiments show that accuracy can be increased by 30% for the CIFAR-10 dataset with only 5% globally shared data.
Federated learning (FL) enables distributed devices to jointly train a shared model while keeping the training data local. Different from the horizontal FL (HFL) setting where each client has partial data samples, vertical FL (VFL), which allows each client to collect partial features, has attracted intensive research efforts recently. In this paper, we identified two challenges that state-of-the-art VFL frameworks are facing: (1) some works directly average the learned feature embeddings and therefore might lose the unique properties of each local feature set; (2) server needs to communicate gradients with the clients for each training step, incurring high communication cost that leads to rapid consumption of privacy budgets. In this paper, we aim to address the above challenges and propose an efficient VFL with multiple linear heads (VIM) framework, where each head corresponds to local clients by taking the separate contribution of each client into account. In addition, we propose an Alternating Direction Method of Multipliers (ADMM)-based method to solve our optimization problem, which reduces the communication cost by allowing multiple local updates in each step, and thus leads to better performance under differential privacy. We consider various settings including VFL with model splitting and without model splitting. For both settings, we carefully analyze the differential privacy mechanism for our framework. Moreover, we show that a byproduct of our framework is that the weights of learned linear heads reflect the importance of local clients. We conduct extensive evaluations and show that on four real-world datasets, VIM achieves significantly higher performance and faster convergence compared with state-of-the-arts. We also explicitly evaluate the importance of local clients and show that VIM enables functionalities such as client-level explanation and client denoising.
Federated learning (FL) has been developed as a promising framework to leverage the resources of edge devices, enhance customers' privacy, comply with regulations, and reduce development costs. Although many methods and applications have been developed for FL, several critical challenges for practical FL systems remain unaddressed. This paper provides an outlook on FL development, categorized into five emerging directions of FL, namely algorithm foundation, personalization, hardware and security constraints, lifelong learning, and nonstandard data. Our unique perspectives are backed by practical observations from large-scale federated systems for edge devices.
The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.
The demand for artificial intelligence has grown significantly over the last decade and this growth has been fueled by advances in machine learning techniques and the ability to leverage hardware acceleration. However, in order to increase the quality of predictions and render machine learning solutions feasible for more complex applications, a substantial amount of training data is required. Although small machine learning models can be trained with modest amounts of data, the input for training larger models such as neural networks grows exponentially with the number of parameters. Since the demand for processing training data has outpaced the increase in computation power of computing machinery, there is a need for distributing the machine learning workload across multiple machines, and turning the centralized into a distributed system. These distributed systems present new challenges, first and foremost the efficient parallelization of the training process and the creation of a coherent model. This article provides an extensive overview of the current state-of-the-art in the field by outlining the challenges and opportunities of distributed machine learning over conventional (centralized) machine learning, discussing the techniques used for distributed machine learning, and providing an overview of the systems that are available.