We propose PolyVoice, a language model-based framework for speech-to-speech translation (S2ST) system. Our framework consists of two language models: a translation language model and a speech synthesis language model. We use discretized speech units, which are generated in a fully unsupervised way, and thus our framework can be used for unwritten languages. For the speech synthesis part, we adopt the existing VALL-E X approach and build a unit-based audio language model. This grants our framework the ability to preserve the voice characteristics and the speaking style of the original speech. We examine our system on Chinese $\rightarrow$ English and English $\rightarrow$ Spanish pairs. Experimental results show that our system can generate speech with high translation quality and audio quality. Speech samples are available at //speechtranslation.github.io/polyvoice.
Generative Adversarial Networks (GAN) have emerged as a formidable AI tool to generate realistic outputs based on training datasets. However, the challenge of exerting control over the generation process of GANs remains a significant hurdle. In this paper, we propose a novel methodology to address this issue by integrating a reinforcement learning (RL) agent with a latent-space GAN (l-GAN), thereby facilitating the generation of desired outputs. More specifically, we have developed an actor-critic RL agent with a meticulously designed reward policy, enabling it to acquire proficiency in navigating the latent space of the l-GAN and generating outputs based on specified tasks. To substantiate the efficacy of our approach, we have conducted a series of experiments employing the MNIST dataset, including arithmetic addition as an illustrative task. The outcomes of these experiments serve to validate our methodology. Our pioneering integration of an RL agent with a GAN model represents a novel advancement, holding great potential for enhancing generative networks in the future.
We introduce AudioLM, a framework for high-quality audio generation with long-term consistency. AudioLM maps the input audio to a sequence of discrete tokens and casts audio generation as a language modeling task in this representation space. We show how existing audio tokenizers provide different trade-offs between reconstruction quality and long-term structure, and we propose a hybrid tokenization scheme to achieve both objectives. Namely, we leverage the discretized activations of a masked language model pre-trained on audio to capture long-term structure and the discrete codes produced by a neural audio codec to achieve high-quality synthesis. By training on large corpora of raw audio waveforms, AudioLM learns to generate natural and coherent continuations given short prompts. When trained on speech, and without any transcript or annotation, AudioLM generates syntactically and semantically plausible speech continuations while also maintaining speaker identity and prosody for unseen speakers. Furthermore, we demonstrate how our approach extends beyond speech by generating coherent piano music continuations, despite being trained without any symbolic representation of music.
Automatic subtitling is the task of automatically translating the speech of audiovisual content into short pieces of timed text, i.e. subtitles and their corresponding timestamps. The generated subtitles need to conform to space and time requirements, while being synchronised with the speech and segmented in a way that facilitates comprehension. Given its considerable complexity, the task has so far been addressed through a pipeline of components that separately deal with transcribing, translating, and segmenting text into subtitles, as well as predicting timestamps. In this paper, we propose the first direct ST model for automatic subtitling that generates subtitles in the target language along with their timestamps with a single model. Our experiments on 7 language pairs show that our approach outperforms a cascade system in the same data condition, also being competitive with production tools on both in-domain and newly-released out-domain benchmarks covering new scenarios.
Large Language Models (LLMs) have demonstrated remarkable performance on various quantitative reasoning and knowledge benchmarks. However, many of these benchmarks are losing utility as LLMs get increasingly high scores, despite not yet reaching expert performance in these domains. We introduce ARB, a novel benchmark composed of advanced reasoning problems in multiple fields. ARB presents a more challenging test than prior benchmarks, featuring problems in mathematics, physics, biology, chemistry, and law. As a subset of ARB, we introduce a challenging set of math and physics problems which require advanced symbolic reasoning and domain knowledge. We evaluate recent models such as GPT-4 and Claude on ARB and demonstrate that current models score well below 50% on more demanding tasks. In order to improve both automatic and assisted evaluation capabilities, we introduce a rubric-based evaluation approach, allowing GPT-4 to score its own intermediate reasoning steps. Further, we conduct a human evaluation of the symbolic subset of ARB, finding promising agreement between annotators and GPT-4 rubric evaluation scores.
Recently, diffusion models have excelled in image generation tasks and have also been applied to neural language processing (NLP) for controllable text generation. However, the application of diffusion models in a cross-lingual setting is less unexplored. Additionally, while pretraining with diffusion models has been studied within a single language, the potential of cross-lingual pretraining remains understudied. To address these gaps, we propose XDLM, a novel Cross-lingual diffusion model for machine translation, consisting of pretraining and fine-tuning stages. In the pretraining stage, we propose TLDM, a new training objective for mastering the mapping between different languages; in the fine-tuning stage, we build up the translation system based on the pretrained model. We evaluate the result on several machine translation benchmarks and outperformed both diffusion and Transformer baselines.
Direct speech-to-speech translation (S2ST) has gradually become popular as it has many advantages compared with cascade S2ST. However, current research mainly focuses on the accuracy of semantic translation and ignores the speech style transfer from a source language to a target language. The lack of high-fidelity expressive parallel data makes such style transfer challenging, especially in more practical zero-shot scenarios. To solve this problem, we first build a parallel corpus using a multi-lingual multi-speaker text-to-speech synthesis (TTS) system and then propose the StyleS2ST model with cross-lingual speech style transfer ability based on a style adaptor on a direct S2ST system framework. Enabling continuous style space modeling of an acoustic model through parallel corpus training and non-parallel TTS data augmentation, StyleS2ST captures cross-lingual acoustic feature mapping from the source to the target language. Experiments show that StyleS2ST achieves good style similarity and naturalness in both in-set and out-of-set zero-shot scenarios.
Although machine translation systems are mostly designed to serve in the general domain, there is a growing tendency to adapt these systems to other domains like literary translation. In this paper, we focus on English-Turkish literary translation and develop machine translation models that take into account the stylistic features of translators. We fine-tune a pre-trained machine translation model by the manually-aligned works of a particular translator. We make a detailed analysis of the effects of manual and automatic alignments, data augmentation methods, and corpus size on the translations. We propose an approach based on stylistic features to evaluate the style of a translator in the output translations. We show that the human translator style can be highly recreated in the target machine translations by adapting the models to the style of the translator.
In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.
Collaborative filtering often suffers from sparsity and cold start problems in real recommendation scenarios, therefore, researchers and engineers usually use side information to address the issues and improve the performance of recommender systems. In this paper, we consider knowledge graphs as the source of side information. We propose MKR, a Multi-task feature learning approach for Knowledge graph enhanced Recommendation. MKR is a deep end-to-end framework that utilizes knowledge graph embedding task to assist recommendation task. The two tasks are associated by cross&compress units, which automatically share latent features and learn high-order interactions between items in recommender systems and entities in the knowledge graph. We prove that cross&compress units have sufficient capability of polynomial approximation, and show that MKR is a generalized framework over several representative methods of recommender systems and multi-task learning. Through extensive experiments on real-world datasets, we demonstrate that MKR achieves substantial gains in movie, book, music, and news recommendation, over state-of-the-art baselines. MKR is also shown to be able to maintain a decent performance even if user-item interactions are sparse.
Neural machine translation (NMT) is a deep learning based approach for machine translation, which yields the state-of-the-art translation performance in scenarios where large-scale parallel corpora are available. Although the high-quality and domain-specific translation is crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as monolingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a comprehensive survey of the state-of-the-art domain adaptation techniques for NMT.