Volume rendering using neural fields has shown great promise in capturing and synthesizing novel views of 3D scenes. However, this type of approach requires querying the volume network at multiple points along each viewing ray in order to render an image, resulting in very slow rendering times. In this paper, we present a method that overcomes this limitation by learning a direct mapping from camera rays to locations along the ray that are most likely to influence the pixel's final appearance. Using this approach we are able to render, train and fine-tune a volumetrically-rendered neural field model an order of magnitude faster than standard approaches. Unlike existing methods, our approach works with general volumes and can be trained end-to-end.
While the existing vacating room before encryption (VRBE) based schemes can achieve decent embedding rate, the payloads of the existing vacating room after encryption (VRAE) based schemes are relatively low. To address this issue, this paper proposes a generalized framework for high-capacity RDHEI for both VRBE and VRAE cases. First, an efficient embedding room generation algorithm (ERGA) is designed to produce large embedding room by using pixel prediction and entropy encoding. Then, we propose two RDHEI schemes, one for VRBE, another for VRAE. In the VRBE scenario, the image owner generates the embedding room with ERGA and encrypts the preprocessed image by using the stream cipher with two encryption keys. Then, the data hider locates the embedding room and embeds the encrypted additional data. In the VRAE scenario, the cover image is encrypted by an improved block modulation and permutation encryption algorithm, where the spatial redundancy in the plain-text image is largely preserved. Then, the data hider applies ERGA on the encrypted image to generate the embedding room and conducts data embedding. For both schemes, the receivers with different authentication keys can respectively conduct error-free data extraction and/or error-free image recovery. The experimental results show that the two proposed schemes outperform many state-of-the-art RDHEI arts. Besides, the schemes can ensure high security level, where the original image can be hardly discovered from the encrypted version before and after data hiding by the unauthorized user.
Memory replay may be key to learning in biological brains, which manage to learn new tasks continually without catastrophically interfering with previous knowledge. On the other hand, artificial neural networks suffer from catastrophic forgetting and tend to only perform well on tasks that they were recently trained on. In this work we explore the application of latent space based memory replay for classification using artificial neural networks. We are able to preserve good performance in previous tasks by storing only a small percentage of the original data in a compressed latent space version.
Automated image processing algorithms can improve the quality, efficiency, and consistency of classifying the morphology of heterogeneous carbonate rock and can deal with a massive amount of data and images seamlessly. Geoscientists face difficulties in setting the direction of the optimum method for determining petrophysical properties from rock images, Micro-Computed Tomography (uCT), or Magnetic Resonance Imaging (MRI). Most of the successful work is from the homogeneous rocks focusing on 2D images with less focus on 3D and requiring numerical simulation. Currently, image analysis methods converge to three approaches: image processing, artificial intelligence, and combined image processing with artificial intelligence. In this work, we propose two methods to determine the porosity from 3D uCT and MRI images: an image processing method with Image Resolution Optimized Gaussian Algorithm (IROGA); advanced image recognition method enabled by Machine Learning Difference of Gaussian Random Forest (MLDGRF). We have built reference 3D micro models and collected images for calibration of IROGA and MLDGRF methods. To evaluate the predictive capability of these calibrated approaches, we ran them on 3D uCT and MRI images of natural heterogeneous carbonate rock. We measured the porosity and lithology of the carbonate rock using three and two industry-standard ways, respectively, as reference values. Notably, IROGA and MLDGRF have produced porosity results with an accuracy of 96.2% and 97.1% on the training set and 91.7% and 94.4% on blind test validation, respectively, in comparison with the three experimental measurements. We measured limestone and pyrite reference values using two methods, X-ray powder diffraction, and grain density measurements. MLDGRF has produced lithology (limestone and Pyrite) volumes with 97.7% accuracy.
Single image super-resolution (SISR), as a traditional ill-conditioned inverse problem, has been greatly revitalized by the recent development of convolutional neural networks (CNN). These CNN-based methods generally map a low-resolution image to its corresponding high-resolution version with sophisticated network structures and loss functions, showing impressive performances. This paper provides a new insight on conventional SISR algorithm, and proposes a substantially different approach relying on the iterative optimization. A novel iterative super-resolution network (ISRN) is proposed on top of the iterative optimization. We first analyze the observation model of image SR problem, inspiring a feasible solution by mimicking and fusing each iteration in a more general and efficient manner. Considering the drawbacks of batch normalization, we propose a feature normalization (F-Norm, FN) method to regulate the features in network. Furthermore, a novel block with FN is developed to improve the network representation, termed as FNB. Residual-in-residual structure is proposed to form a very deep network, which groups FNBs with a long skip connection for better information delivery and stabling the training phase. Extensive experimental results on testing benchmarks with bicubic (BI) degradation show our ISRN can not only recover more structural information, but also achieve competitive or better PSNR/SSIM results with much fewer parameters compared to other works. Besides BI, we simulate the real-world degradation with blur-downscale (BD) and downscale-noise (DN). ISRN and its extension ISRN+ both achieve better performance than others with BD and DN degradation models.
Residual networks (ResNets) have displayed impressive results in pattern recognition and, recently, have garnered considerable theoretical interest due to a perceived link with neural ordinary differential equations (neural ODEs). This link relies on the convergence of network weights to a smooth function as the number of layers increases. We investigate the properties of weights trained by stochastic gradient descent and their scaling with network depth through detailed numerical experiments. We observe the existence of scaling regimes markedly different from those assumed in neural ODE literature. Depending on certain features of the network architecture, such as the smoothness of the activation function, one may obtain an alternative ODE limit, a stochastic differential equation or neither of these. These findings cast doubts on the validity of the neural ODE model as an adequate asymptotic description of deep ResNets and point to an alternative class of differential equations as a better description of the deep network limit.
Graph Convolutional Network (GCN) has been widely applied in transportation demand prediction due to its excellent ability to capture non-Euclidean spatial dependence among station-level or regional transportation demands. However, in most of the existing research, the graph convolution was implemented on a heuristically generated adjacency matrix, which could neither reflect the real spatial relationships of stations accurately, nor capture the multi-level spatial dependence of demands adaptively. To cope with the above problems, this paper provides a novel graph convolutional network for transportation demand prediction. Firstly, a novel graph convolution architecture is proposed, which has different adjacency matrices in different layers and all the adjacency matrices are self-learned during the training process. Secondly, a layer-wise coupling mechanism is provided, which associates the upper-level adjacency matrix with the lower-level one. It also reduces the scale of parameters in our model. Lastly, a unitary network is constructed to give the final prediction result by integrating the hidden spatial states with gated recurrent unit, which could capture the multi-level spatial dependence and temporal dynamics simultaneously. Experiments have been conducted on two real-world datasets, NYC Citi Bike and NYC Taxi, and the results demonstrate the superiority of our model over the state-of-the-art ones.
Localizing the camera in a known indoor environment is a key building block for scene mapping, robot navigation, AR, etc. Recent advances estimate the camera pose via optimization over the 2D/3D-3D correspondences established between the coordinates in 2D/3D camera space and 3D world space. Such a mapping is estimated with either a convolution neural network or a decision tree using only the static input image sequence, which makes these approaches vulnerable to dynamic indoor environments that are quite common yet challenging in the real world. To address the aforementioned issues, in this paper, we propose a novel outlier-aware neural tree which bridges the two worlds, deep learning and decision tree approaches. It builds on three important blocks; (a) a hierarchical space partition over the indoor scene to construct the decision tree; (b) a neural routing function, implemented as a deep classification network, employed for better 3D scene understanding; and (c) an outlier rejection module used to filter out dynamic points during the hierarchical routing process. Our proposed algorithm is evaluated on the RIO-10 benchmark developed for camera relocalization in dynamic indoor environment. It achieves robust neural routing through space partitions and outperforms the state-of-the-art approaches by around 30\% on camera pose accuracy, while running comparably fast for evaluation.
We present an approach to learn an object-centric forward model, and show that this allows us to plan for sequences of actions to achieve distant desired goals. We propose to model a scene as a collection of objects, each with an explicit spatial location and implicit visual feature, and learn to model the effects of actions using random interaction data. Our model allows capturing the robot-object and object-object interactions, and leads to more sample-efficient and accurate predictions. We show that this learned model can be leveraged to search for action sequences that lead to desired goal configurations, and that in conjunction with a learned correction module, this allows for robust closed loop execution. We present experiments both in simulation and the real world, and show that our approach improves over alternate implicit or pixel-space forward models. Please see our project page (//judyye.github.io/ocmpc/) for result videos.
Predicting interactions between structured entities lies at the core of numerous tasks such as drug regimen and new material design. In recent years, graph neural networks have become attractive. They represent structured entities as graphs and then extract features from each individual graph using graph convolution operations. However, these methods have some limitations: i) their networks only extract features from a fix-sized subgraph structure (i.e., a fix-sized receptive field) of each node, and ignore features in substructures of different sizes, and ii) features are extracted by considering each entity independently, which may not effectively reflect the interaction between two entities. To resolve these problems, we present MR-GNN, an end-to-end graph neural network with the following features: i) it uses a multi-resolution based architecture to extract node features from different neighborhoods of each node, and, ii) it uses dual graph-state long short-term memory networks (L-STMs) to summarize local features of each graph and extracts the interaction features between pairwise graphs. Experiments conducted on real-world datasets show that MR-GNN improves the prediction of state-of-the-art methods.
Person Re-Identification (ReID) requires comparing two images of person captured under different conditions. Existing work based on neural networks often computes the similarity of feature maps from one single convolutional layer. In this work, we propose an efficient, end-to-end fully convolutional Siamese network that computes the similarities at multiple levels. We demonstrate that multi-level similarity can improve the accuracy considerably using low-complexity network structures in ReID problem. Specifically, first, we use several convolutional layers to extract the features of two input images. Then, we propose Convolution Similarity Network to compute the similarity score maps for the inputs. We use spatial transformer networks (STNs) to determine spatial attention. We propose to apply efficient depth-wise convolution to compute the similarity. The proposed Convolution Similarity Networks can be inserted into different convolutional layers to extract visual similarities at different levels. Furthermore, we use an improved ranking loss to further improve the performance. Our work is the first to propose to compute visual similarities at low, middle and high levels for ReID. With extensive experiments and analysis, we demonstrate that our system, compact yet effective, can achieve competitive results with much smaller model size and computational complexity.