亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Digital humans have witnessed extensive applications in various domains, necessitating related quality assessment studies. However, there is a lack of comprehensive digital human quality assessment (DHQA) databases. To address this gap, we propose SJTU-H3D, a subjective quality assessment database specifically designed for full-body digital humans. It comprises 40 high-quality reference digital humans and 1,120 labeled distorted counterparts generated with seven types of distortions. The SJTU-H3D database can serve as a benchmark for DHQA research, allowing evaluation and refinement of processing algorithms. Further, we propose a zero-shot DHQA approach that focuses on no-reference (NR) scenarios to ensure generalization capabilities while mitigating database bias. Our method leverages semantic and distortion features extracted from projections, as well as geometry features derived from the mesh structure of digital humans. Specifically, we employ the Contrastive Language-Image Pre-training (CLIP) model to measure semantic affinity and incorporate the Naturalness Image Quality Evaluator (NIQE) model to capture low-level distortion information. Additionally, we utilize dihedral angles as geometry descriptors to extract mesh features. By aggregating these measures, we introduce the Digital Human Quality Index (DHQI), which demonstrates significant improvements in zero-shot performance. The DHQI can also serve as a robust baseline for DHQA tasks, facilitating advancements in the field. The database and the code are available at //github.com/zzc-1998/SJTU-H3D.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

Large Language Models (LLM) are a new class of computation engines, "programmed" via prompt engineering. We are still learning how to best "program" these LLMs to help developers. We start with the intuition that developers tend to consciously and unconsciously have a collection of semantics facts in mind when working on coding tasks. Mostly these are shallow, simple facts arising from a quick read. For a function, examples of facts might include parameter and local variable names, return expressions, simple pre- and post-conditions, and basic control and data flow, etc. One might assume that the powerful multi-layer architecture of transformer-style LLMs makes them inherently capable of doing this simple level of "code analysis" and extracting such information, implicitly, while processing code: but are they, really? If they aren't, could explicitly adding this information help? Our goal here is to investigate this question, using the code summarization task and evaluate whether automatically augmenting an LLM's prompt with semantic facts explicitly, actually helps. Prior work shows that LLM performance on code summarization benefits from few-shot samples drawn either from the same-project or from examples found via information retrieval methods (such as BM25). While summarization performance has steadily increased since the early days, there is still room for improvement: LLM performance on code summarization still lags its performance on natural-language tasks like translation and text summarization. We find that adding semantic facts actually does help! This approach improves performance in several different settings suggested by prior work, including for two different Large Language Models. In most cases, improvement nears or exceeds 2 BLEU; for the PHP language in the challenging CodeSearchNet dataset, this augmentation actually yields performance surpassing 30 BLEU.

Most open-domain dialogue systems suffer from forgetting important information, especially in a long-term conversation. Existing works usually train the specific retriever or summarizer to obtain key information from the past, which is time-consuming and highly depends on the quality of labeled data. To alleviate this problem, we propose to recursively generate summaries/ memory using large language models (LLMs) to enhance long-term memory ability. Specifically, our method first stimulates LLMs to memorize small dialogue contexts and then recursively produce new memory using previous memory and following contexts. Finally, the LLM can easily generate a highly consistent response with the help of the latest memory. We evaluate our method using ChatGPT and text-davinci-003, and the experiments on the widely-used public dataset show that our method can generate more consistent responses in a long-context conversation. Notably, our method is a potential solution to enable the LLM to model the extremely long context. Code and scripts will be released later.

Version incompatibility issues are rampant when reusing or reproducing deep learning models and applications. Existing techniques are limited to library dependency specifications declared in PyPI. Therefore, these techniques cannot detect version issues due to undocumented version constraints or issues involving hardware drivers or OS. To address this challenge, we propose to leverage the abundant discussions of DL version issues from Stack Overflow to facilitate version incompatibility detection. We reformulate the problem of knowledge extraction as a Question-Answering (QA) problem and use a pre-trained QA model to extract version compatibility knowledge from online discussions. The extracted knowledge is further consolidated into a weighted knowledge graph to detect potential version incompatibilities when reusing a DL project. Our evaluation results show that (1) our approach can accurately extract version knowledge with 84% accuracy, and (2) our approach can accurately identify 65% of known version issues in 10 popular DL projects with a high precision (92%), while two state-of-the-art approaches can only detect 29% and 6% of these issues with 33% and 17% precision respectively.

Recent years have witnessed the widespread use of artificial intelligence (AI) algorithms and machine learning (ML) models. Despite their tremendous success, a number of vital problems like ML model brittleness, their fairness, and the lack of interpretability warrant the need for the active developments in explainable artificial intelligence (XAI) and formal ML model verification. The two major lines of work in XAI include feature selection methods, e.g. Anchors, and feature attribution techniques, e.g. LIME and SHAP. Despite their promise, most of the existing feature selection and attribution approaches are susceptible to a range of critical issues, including explanation unsoundness and out-of-distribution sampling. A recent formal approach to XAI (FXAI) although serving as an alternative to the above and free of these issues suffers from a few other limitations. For instance and besides the scalability limitation, the formal approach is unable to tackle the feature attribution problem. Additionally, a formal explanation despite being formally sound is typically quite large, which hampers its applicability in practical settings. Motivated by the above, this paper proposes a way to apply the apparatus of formal XAI to the case of feature attribution based on formal explanation enumeration. Formal feature attribution (FFA) is argued to be advantageous over the existing methods, both formal and non-formal. Given the practical complexity of the problem, the paper then proposes an efficient technique for approximating exact FFA. Finally, it offers experimental evidence of the effectiveness of the proposed approximate FFA in comparison to the existing feature attribution algorithms not only in terms of feature importance and but also in terms of their relative order.

With the development of deep learning techniques, supervised learning has achieved performances surpassing those of humans. Researchers have designed numerous corresponding models for different data modalities, achieving excellent results in supervised tasks. However, with the exponential increase of data in multiple fields, the recognition and classification of unlabeled data have gradually become a hot topic. In this paper, we employed a Reinforcement Learning framework to simulate the cognitive processes of humans for effectively addressing novel class discovery in the Open-set domain. We deployed a Member-to-Leader Multi-Agent framework to extract and fuse features from multi-modal information, aiming to acquire a more comprehensive understanding of the feature space. Furthermore, this approach facilitated the incorporation of self-supervised learning to enhance model training. We employed a clustering method with varying constraint conditions, ranging from strict to loose, allowing for the generation of dependable labels for a subset of unlabeled data during the training phase. This iterative process is similar to human exploratory learning of unknown data. These mechanisms collectively update the network parameters based on rewards received from environmental feedback. This process enables effective control over the extent of exploration learning, ensuring the accuracy of learning in unknown data categories. We demonstrate the performance of our approach in both the 3D and 2D domains by employing the OS-MN40, OS-MN40-Miss, and Cifar10 datasets. Our approach achieves competitive competitive results.

Hash representation learning of multi-view heterogeneous data is the key to improving the accuracy of multimedia retrieval. However, existing methods utilize local similarity and fall short of deeply fusing the multi-view features, resulting in poor retrieval accuracy. Current methods only use local similarity to train their model. These methods ignore global similarity. Furthermore, most recent works fuse the multi-view features via a weighted sum or concatenation. We contend that these fusion methods are insufficient for capturing the interaction between various views. We present a novel Central Similarity Multi-View Hashing (CSMVH) method to address the mentioned problems. Central similarity learning is used for solving the local similarity problem, which can utilize the global similarity between the hash center and samples. We present copious empirical data demonstrating the superiority of gate-based fusion over conventional approaches. On the MS COCO and NUS-WIDE, the proposed CSMVH performs better than the state-of-the-art methods by a large margin (up to 11.41% mean Average Precision (mAP) improvement).

Anomaly detection (AD) tasks have been solved using machine learning algorithms in various domains and applications. The great majority of these algorithms use normal data to train a residual-based model, and assign anomaly scores to unseen samples based on their dissimilarity with the learned normal regime. The underlying assumption of these approaches is that anomaly-free data is available for training. This is, however, often not the case in real-world operational settings, where the training data may be contaminated with a certain fraction of abnormal samples. Training with contaminated data, in turn, inevitably leads to a deteriorated AD performance of the residual-based algorithms. In this paper we introduce a framework for a fully unsupervised refinement of contaminated training data for AD tasks. The framework is generic and can be applied to any residual-based machine learning model. We demonstrate the application of the framework to two public datasets of multivariate time series machine data from different application fields. We show its clear superiority over the naive approach of training with contaminated data without refinement. Moreover, we compare it to the ideal, unrealistic reference in which anomaly-free data would be available for training. Since the approach exploits information from the anomalies, and not only from the normal regime, it is comparable and often outperforms the ideal baseline as well.

Asynchronous online discussions are a common fundamental tool to facilitate social interaction in hybrid and online courses. However, instructors lack the tools to accomplish the overwhelming task of evaluating asynchronous online discussion activities. In this paper we present an approach that uses Latent Dirichlet Analysis (LDA) and the instructor's keywords to automatically extract codes from a relatively small dataset. We use the generated codes to build an Epistemic Network Analysis (ENA) model and compare this model with a previous ENA model built by human coders. The results show that there is no statistical difference between the two models. We present an analysis of these models and discuss the potential use of ENA as a visualization to help instructors evaluating asynchronous online discussions.

Recent artificial intelligence (AI) systems have reached milestones in "grand challenges" ranging from Go to protein-folding. The capability to retrieve medical knowledge, reason over it, and answer medical questions comparably to physicians has long been viewed as one such grand challenge. Large language models (LLMs) have catalyzed significant progress in medical question answering; Med-PaLM was the first model to exceed a "passing" score in US Medical Licensing Examination (USMLE) style questions with a score of 67.2% on the MedQA dataset. However, this and other prior work suggested significant room for improvement, especially when models' answers were compared to clinicians' answers. Here we present Med-PaLM 2, which bridges these gaps by leveraging a combination of base LLM improvements (PaLM 2), medical domain finetuning, and prompting strategies including a novel ensemble refinement approach. Med-PaLM 2 scored up to 86.5% on the MedQA dataset, improving upon Med-PaLM by over 19% and setting a new state-of-the-art. We also observed performance approaching or exceeding state-of-the-art across MedMCQA, PubMedQA, and MMLU clinical topics datasets. We performed detailed human evaluations on long-form questions along multiple axes relevant to clinical applications. In pairwise comparative ranking of 1066 consumer medical questions, physicians preferred Med-PaLM 2 answers to those produced by physicians on eight of nine axes pertaining to clinical utility (p < 0.001). We also observed significant improvements compared to Med-PaLM on every evaluation axis (p < 0.001) on newly introduced datasets of 240 long-form "adversarial" questions to probe LLM limitations. While further studies are necessary to validate the efficacy of these models in real-world settings, these results highlight rapid progress towards physician-level performance in medical question answering.

Aspect level sentiment classification aims to identify the sentiment expressed towards an aspect given a context sentence. Previous neural network based methods largely ignore the syntax structure in one sentence. In this paper, we propose a novel target-dependent graph attention network (TD-GAT) for aspect level sentiment classification, which explicitly utilizes the dependency relationship among words. Using the dependency graph, it propagates sentiment features directly from the syntactic context of an aspect target. In our experiments, we show our method outperforms multiple baselines with GloVe embeddings. We also demonstrate that using BERT representations further substantially boosts the performance.

北京阿比特科技有限公司